scholarly journals Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

Author(s):  
Biuck Habibi ◽  
Serveh Ghaderi

<p>In this study, Ni-Al layered double hydroxide (LDH)-Pt nanoparticles (PtNPs) as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE) by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved</p><div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><em>Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016</em></p></div></div></div><p><strong>How to Cite</strong>: Habibi, B., Ghaderi, S. (2017). Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 12(1): 1-13 (doi:10.9767/bcrec.12.1.460.1-13)</p><p><strong>Permalink/DOI</strong>: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13</p>

2012 ◽  
Vol 557-559 ◽  
pp. 371-374
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang

Nanocomposites of poly(ε-caprolactone) (PCL) and layered double hydroxide (LDH) were prepared by in situ polymerization at low LDHs loadings in this work. The resultants were characterized by FTIR spectroscopy, X-ray diffraction (XRD), differential scanning calorimeter (DSC) and UV-visible spectroscopy (UV-vis). FTIR showed that the PCL/LDHs nanocomposites were prepared successfully by in situ polymerization and XRD spectra showed that the crystal structure did not change greatly in the presence of LDHS. DSC results confirmed that LDHs could act as nucleating agents. UV-vis spectra showed that LDHs had stronger absorbance peak than LDH. Moreover, the PCL/LDHs nanocomposites had strong anti-ultraviolet effect by introduction of LDHs into polymer matrix.


2012 ◽  
Vol 567 ◽  
pp. 127-130
Author(s):  
Jian Ye Song ◽  
Ming Zhe Leng ◽  
Xing Qi Fu ◽  
Jian Qiang Liu

Single-phase ZnAl2O4 spinel has been prepared by a novel simple route using layered double hydroxide as a precursor. ZnAl2O4 spinel is directly obtained by calcination of zinc aluminum layered double hydroxide (Zn/Al molar radio is 0.5) without further chemical treatment. The key feature of this method is that it affords uniform distribution of all metal cations on an atomic level in the precursor. The structural characteristics of the as-synthesized precursor and the resulted calcined products are obtained by X-ray diffraction and scanning electron microscope.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7389
Author(s):  
Michael Kahl ◽  
Teresa D. Golden

Modified zaccagnaite layered double hydroxide (LDH) type films were synthesized on steel substrates by pulsed electrochemical deposition from aqueous solutions. The resulting films were characterized by X-ray diffraction, scanning electron microscopy/X-ray dispersive spectroscopy, and Fourier transform infrared spectroscopy. Structural characterization indicated a pure layered double hydroxide phase; however, elemental analysis revealed that the surface of the films contained Zn:Al ratios outside the typical ranges of layered double hydroxides. Layer thickness for the deposited films ranged from approximately 0.4 to 3.0 μm. The corrosion resistance of the film was determined using potentiodynamic polarization experiments in 3.5 wt.% NaCl solution. The corrosion current density for the coatings was reduced by 82% and the corrosion potential was shifted 126 mV more positive when 5 layers of modified LDH coatings were deposited onto the steel substrates. A mechanism was proposed for the corroding reactions at the coating.


1998 ◽  
Vol 63 (5) ◽  
pp. 741-748 ◽  
Author(s):  
Mohamed Badreddine ◽  
Ahmed Legrouri ◽  
Allal Barroug ◽  
André De Roy ◽  
Jean-Pierre Besse

The exchange of chloride ion by phosphate ions in [Zn-Al-Cl] layered double hydroxide was investigated using X-ray diffraction and infrared spectroscopy. The effects of the pH of the solution containing the phosphate ions on the ion exchange was studied. The best sample in terms of crystallinity, was obtained at pH 8. This sample was further characterized by scanning electron microscopy and microanalysis.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Zhao ◽  
Fenfei Xiao ◽  
Qingze Jiao

Ni/Al layered double hydroxide (LDH) nanorods were successfully synthesized by the hydrothermal reaction. The crystal structure of the products was characterized by X-ray diffraction (XRD). The morphology of the products was observed using transmission electron microscopy (TEM) and field emission scanning electron microscopy (SEM). The influences of reaction time and pH value on the morphology of the Ni/Al LDHs were investigated. The result showed that the well-crystallized nanorods of Ni/Al LDHs could be obtained when the pH value was about 10.0 with a long reaction time (12–18 h) at 180°C.


2004 ◽  
Vol 65 (2-3) ◽  
pp. 453-457 ◽  
Author(s):  
Mourad Intissar ◽  
Sebastian Holler ◽  
François Malherbe ◽  
Jean-Pierre Besse ◽  
Fabrice Leroux

Author(s):  
Zaini Hamzah ◽  
Mohd Najif Ab Rahman ◽  
Yamin Yasin ◽  
Siti Mariam Sumari ◽  
Ahmad Saat

Layered double hydroxide with molar ratio of 4 (MAN 4) was synthesized by co-precipitation and followed by hydrothermal method. The compound was then later going through ion exchange with K2HPO4 for 48 hours to produce MgAlHPO4 (MAHP 4). The solid produced were characterized using X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). Adsorption of lead solution by MAHP 4 was carried out using batch experiment by mixing the lead solution and the solid of layered double hydroxide. The effects of various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for lead removal was found to be at pH of 5 and the optimum time of lead removal was found at 2 hours. The isotherm data was analysed using Langmuir and the correlation coefficient of 0.998 was obtained. The maximum adsorption capacity, Qo (mg/g) of 500 mg/g was also recorded from the Langmuir isotherm. The remaining lead solution was determined by using EDXRF (Energy Dispersive X-Ray Fluorescence spectrometry) model MiniPal 4 (PAN analytical). The results in this study indicate that MAHP 4 was an interesting adsorbent for removing lead from aqueous solution.


2014 ◽  
Vol 1035 ◽  
pp. 7-11 ◽  
Author(s):  
Xiang Li Xie ◽  
Jie Zhang ◽  
Lin Jiang Wang

The Mg-Al layered double hydroxide (LDH) with carbonate interaction was synthesized by the urea method under hydrothermal conditions and layered double oxide (LDO) was prepared by calcination of LDH. The LDO was used as adsorbents for the removal of lead from aqueous solutions. The X-ray diffraction patterns of the LDO demonstrate that the adsorption is significantly enhanced by reconstruction of its original layered structure in the presence of lead with the memory effect. The process involved a fast adsorption within three hours, followed by slower, more gradual and stable adsorption. The adsorption capability for lead is 6.26 mg/g. The results indicate that the calcined Mg-Al layered double hydroxide is an efficient adsorbent for the treatment of waste water with heavy metal ions.


2020 ◽  
Vol 8 ◽  
Author(s):  
Vanessa Prevot ◽  
Souad Touati ◽  
Christine Mousty

NiAl Layered Double Hydroxide (LDH) alginate bionanocomposites were synthesized by confined coprecipitation within alginate beads. The NiAl based bionanocomposites were prepared either by impregnation by divalent and trivalent metal cations of pre-formed calcium cross-linked alginate beads or by using the metal cations (Ni2+, Al3+) as crosslinking cationic agents for the biopolymer network. The impregnation step was systematically followed by a soaking in NaOH solution to induce the LDH coprecipitation. Powder x-ray diffraction (PXRD), infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), thermogravimetry analysis (TGA), electron microscopies (SEM and TEM) confirmed the biotemplated coprecipitation of LDH nanoparticles ranging from 75 to 150 nm for both strategies. The drying of the LDH@alginate beads by supercritical CO2 drying process led to porous bionanocomposite aerogels when Ca2+ cross-linked alginate beads were used. Such confined preparation of NiAl LDH was extended to bionanocomposite films leading to similar results. The permeability and the electrochemical behavior of these NiAl@alginate bionanocomposites, as thin films coated on indium tin oxide (ITO) electrodes, were investigated by cyclic voltammetry, demonstrating an efficient diffusion of the K4Fe(CN)6 redox probe through the LDH@alginate based films and the improvement of the electrochemical accessibility of the Ni sites.


Sign in / Sign up

Export Citation Format

Share Document