scholarly journals Kinetics of Starch Degradation during Extrusion Cooking of Steady State Flow Konjac (Amorphophallus oncophyllus) Tuber Flour in a Single Screw Extruder

2020 ◽  
Vol 15 (2) ◽  
pp. 591-602
Author(s):  
Andri Cahyo Kumoro ◽  
Diah Susetyo Retnowati ◽  
Ratnawati Ratnawati

The presence of glucomannan in Konjac (Amorphophallus oncophyllus) tuber flour has promoted its various applications, especially in the food, drink, drug delivery and cosmetics. Starch is the main impurity of Konjac tuber flour. Although the common wet refining method may result in a high purity Konjac tuber flour, it is very tedious, time consuming and costly. This research aimed to study the kinetics of starch degradation in the extrusion cooking process of dry refining method to produce high quality Konjac tuber flour. In this research, Konjac tuber flour with 20% (w/w) moisture was extruded in a single screw extruder by varying screw speeds (50, 75, 100, 125, 150 and 175 rpm) and barrel temperatures (353, 373, 393, 413 and 433 K). The results showed that the starch extrusion cooking obeys the first reaction order. The reaction rate constant could be satisfactorily fitted by Arrhenius correlation with total activation energy of 6191 J.mol−1 and pre-exponential factor of 2.8728×10−1 s−1. Accordingly, thermal degradation was found to be the primary cause of starch degradation, which shared more than 99% of the energy used for starch degradation. Based on mass Biot number and Thiele modulus evaluations, chemical reaction was the controlling mechanism of the process. The results of this research offer potential application in Konjac tuber flour refining process to obtain high quality flour product. Copyright © 2020 BCREC Group. All rights reserved 

2012 ◽  
Vol 550-553 ◽  
pp. 1513-1521
Author(s):  
Sirirat Thothong ◽  
Klanarong Sriroth ◽  
Rattana Tantatherdtam ◽  
Amnat Jarerat

To improve the miscibility of native rice starch granules and poly(butylene adipate-co-terephthalate)(PBAT), rice starch was hydrolyzed by a mixture of α-amylase and amyloglucosidase. The obtained porous rice granular starch was then mechanically blended with PBAT by single screw extruder. Many pits and holes on the surface of starch granules were observed by scanning electron microscopy (SEM). The rough surface of the rice starch granules improved the compatibility of the polymers in the blends, which consequently increased the tensile strength and the elongation at break. In addition, SEM also revealed that the porous granules were homogeneously distributed in the polymer matrix with no appearance of gaps.


2018 ◽  
Vol 204 ◽  
pp. 00008
Author(s):  
Heru Suryanto ◽  
Alfian Widi Rahmawan ◽  
Solichin ◽  
Sahana Rizki Tata ◽  
Uun Yanuhar

The development of materials engineering has led to many significant discoveries one of which is biocomposite with its diverse applications. The addition of reinforcing materials in biopolymers improves the composite properties. This study aimed at investigating the effect of adding nanoclay on the tensile strength, morphology, functional group, and structure of extruded biocomposites with cassava starch matrix. This experimental research involved different concentrations of nanoclay i.e. 0%, 2.5%, 5%, 7.5%. The extrusion process was performed using a single screw extruder at 120°C. The samples were characterized by tensile testing, XRD, and SEM. The biocomposite reinforced with 5% nanoclay had the highest tensile strength of 10.8 MPa. The highest diffraction peak at 2θ of 19.4° appeared in the sample added with 5% nanoclay. The addition of excessive amounts of nanoclay can hinder the formation of exfoliated structures.


2013 ◽  
Vol 30 (1) ◽  
pp. 223-242
Author(s):  
M. A. Morcos ◽  
B. M. A. Amer ◽  
H. K. El-Manawaty ◽  
M. M. H. Zakzouk

Sign in / Sign up

Export Citation Format

Share Document