The Potential of Waste Cooking Oil B20 Biodiesel Fuel with Lemon Essential Oil Bioadditive: Physicochemical Properties, Molecular Bonding, and Fuel Consumption

2021 ◽  
Vol 16 (3) ◽  
pp. 555-564
Author(s):  
Avita Ayu Permanasari ◽  
Muhammad Najib Mauludi ◽  
Sukarni Sukarni ◽  
Poppy Puspitasari ◽  
Siti Nur Azella Zaine ◽  
...  

This study is motivated by the depletion of fossil fuels in nature, which is inversely proportional to the higher level of fuel oil consumption, so the need for alternative fuels, namely biodiesel. Biodiesel can be made using waste cooking oil because of its abundant quantity, low price, and not being reused. One of the efforts to achieve energy conservation and improve fuel quality is using bioadditives. A lemon essential oil can be used as a bio-additive because it is easily soluble in fuel and its oxygen-rich content can reduce the rate of fuel consumption. The process in this study is to produce biodiesel with waste cooking oil (WCO) using a transesterification process. Biodiesel samples containing the bioadditive lemon essential oil on B20 biodiesel with varying volume fraction (0%; 0.1%; 0.15%; 0.2%). In general, this research can be done in three steps. The first step is the characterization of the compound composition (GCMS) and functional group (FTIR) of diesel fuel, biodiesel, and lemon essential oil bioadditive. The second step is the characterization of the physicochemical properties (density, viscosity, flash point, calorific value) of B20 biodiesel with various concentrations of lemon essential oil bioadditive, then compared with SNI 7182:2015. The third step is determining the rate of fuel consumption in diesel engines. The results show that Biodiesel B20 with a volume fraction of 2% lemon essential oil bioadditive has a high ability to reduce the rate of fuel consumption. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

2020 ◽  
Vol 5 (1) ◽  
pp. 95-108
Author(s):  
Annisa Bhikuning ◽  
Jiro Senda Senda

Studying biodiesel as an alternative fuel is important for finding the most suitable fuel for the future. Biodiesel from waste cooking oil is one of the alternative fuels to replace fossil oil. Waste cooking oil is the used oil from cooking and is taken from hotels or restaurants. The emulsion of waste cooking oil and water is produced by adding water to the oil, as well as some additives to bind the water and the oil. In this study, the fuel properties of 100% biodiesel waste cooking oil  are compared to several blends by volume: 5% of biodiesel waste cooking oil blended with 95% diesel oil (BD5), 10% of biodiesel waste cooking oil blended with 90% of diesel oil (BD10), 5% of biodiesel waste cooking oil blended with 10% of water and 18.7% of additives (BDW18.7), and 5% of biodiesel waste cooking oil blended with 10% of water and 24.7% of additives (BDW24.7). The objectives of this study are to establish the properties and characteristics of the FTIR (Fourier-transform infrared spectroscopy) of biodiesel-water emulsions from waste cooking oil and to compare them to other fuels. The chemical properties of the fuels are analyzed by using the ASTM D Method and FTIR  to determine the FAME (fatty acid methyl ester) composition of biodiesel in diesel oil. The results showed that the addition of additives in the water-biodiesel oil increases the viscosity, density, and flash point. However, it decreased the caloric value due to the oxygen content in the fuel.


2014 ◽  
Vol 607 ◽  
pp. 620-624
Author(s):  
Amir Khalid ◽  
Latip Lambosi ◽  
M.M. Lokman ◽  
Bukhari Manshoor ◽  
Izzuddin Zaman ◽  
...  

Stringent emissions regulations and increasing concern on greenhouse emissions are challenging the researcher to find the alternative fuels like biomass and biodiesel. However, the main issue biodiesel fuel (BDF) from waste cooking oil (WCO) is high toxic emission of Nitrogen Oxides (NOx) and particulate matter (PM) in burning process of burner combustion. Thus, the emulsification concept of BDF and water mixing were studied with focusing in controlling of combustion process especially during early stage combustion in order to minimize the harmful emission. This main purpose of this research is to investigate the effects of biodiesel fuel from waste cooking oil on mixture formation and emission in burner system. The mixture formation behavior of BDF-water-air premixing was investigated due to this spray characteristics will contribute in combustion process that predominantly influence to the NOx and PM emission production. Blending of biodiesel ratio was varied from 5vol%(WCO5)-15vol%(WCO15). Water content under emulsified biodiesel was varied up to 15 percent, and equivalence ratio from 0.6 to 2.0. The real spray image of emulsified WCO fuel and different equivalence ratio were captured by optical visualization system together with color digital camera. The images of the spatial distribution of WCO fuel-water-air mixing will be further analyzed compared with the exhaust emission production in order to understand the influences of mixture formation on combustion process and burning process. Increased of water content, promoted fuel-air premixing and spray tip penetration thus predominantly influences to the reduction the exhaust emissions.


2020 ◽  
Vol 10 (1) ◽  
pp. 16-24
Author(s):  
Aliru Olajide Mustapha ◽  
Amina Abiola Adebisi ◽  
Bukola Opeyemi Olanipekun

The waste cooking oil (WCO) is a low cost and prospective feedstock with no competitive food uses for biodiesel production, but the yield and quality have been greatly affected by impurities.  This study examined the chemical and fuel quality of biodiesel of both WCO and alkaline treated WCO.  The transesterification process using the alkaline treated cooking oil (ACO) methanol and sodium hydroxide as catalyst followed the Association of Officials of Analytical Chemists (AOAC) techniques. The pH values between 7.27 and 8.65 were found for alkaline treated cooking methyl ester (ACME), alkaline treated cooking oil (ACO) and WCO. Density of ACME, ACO and WCO varied between 0.89 and 0.93 (g/cm3). The fatty acids found were benzoic acid (3.77%), octanoic acid (8.35%), and palmitic acid (75.02%) – most abundant. Comparison of results with the American Standard for Testing Materials (ASTM) values showed quality enhancements of ACO in physicochemical and fuel properties over WCO. The biodiesels from ACO have enhanced emulsification, fuel and free fatty acids qualities over the WCO, showing the refinement methodology of WCO has overall improvement in the biodiesel purity and quality against the previous conflicting reports.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.


2018 ◽  
Vol 191 ◽  
pp. 249-257 ◽  
Author(s):  
Xianbao Shen ◽  
Jiacheng Shi ◽  
Xinyue Cao ◽  
Xin Zhang ◽  
Wei Zhang ◽  
...  

Author(s):  
Durai Kumaran ◽  
S.P. Sundar Singh Sivam

One of the challenging issues in the world today is waste management. Improper waste management could be the main source of environmental pollution. In this context, an attempt has been made to prevent the disposal of large quantities of Waste Cooking Oil (WCO) from hotels and restaurants and utilize them as a fuel in diesel engines. WCO is one of the viable alternative fuels, used by researchers in Compression Ignition (CI) engines due to its low cost, no toxicity, biodegradability and renewability. In this research, copper oxide (CuO) nano fluids were prepared by an one-step chemical synthesis method in different mass fractions of 15 ppm, 25 ppm, 35ppm and 50 ppm and blended with WCO. Based on the fuel stability, WCOCN25 and WCOCN50 test fuels are considered. The diesel and WCO were considered as base fuels. A fully equipped, single cylinder, four stroke, water cooled, direct injection, variable compression ratio diesel engine was used for experimentation. The compression ratio of the engine was varied from 16:1 to 18:1. The engine was loaded at different loading conditions by an eddy current dynamometer to measure the performance and emission parameters for the test fuels. The experimental results have shown that the addition of CuO nano fluids and increasing the compression ratio improved the Brake Thermal Efficiency (BTE) of the engine. It is observed that the combustion parameters have been improved due to the higher ignition delay and catalytic activity of CuO nano fluids. In addition, CuO nano fluids have a major role in controlling hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) and smoke emissions.


Sign in / Sign up

Export Citation Format

Share Document