scholarly journals Preparation of NiFe2O4 Nanoparticles by Solution Combustion Method as Photocatalyst of Congo red

2021 ◽  
Vol 16 (3) ◽  
pp. 481-490
Author(s):  
Poedji Loekitowati Hariani ◽  
Muhammad Said ◽  
Addy Rachmat ◽  
Fahma Riyanti ◽  
Handayani Citra Pratiwi ◽  
...  

NiFe2O4 nanoparticles had been successfully synthesized by solution combustion method using urea fuel (organic precursor). The synthesized NiFe2O4 were characterized by X-ray diffraction (XRD), Scanning electron microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Transmission Electron Microscopy (TEM), Fourier Transform Infra-Red (FTIR), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). NiFe2O4 nanoparticles irradiated with visible light were employed to degrade Congo red dye with the following variable: solution pH (3–8), H2O2 concentration (0.5–3 mM), and Congo red concentration (100–600 mg/L). XRD analysis results showed that the NiFe2O4 nanoparticles had a cubic spinel structure. The particle sizes are in the range of 10–40 nm. The magnetic properties of NiFe2O4 nanoparticles determined using VSM showed a magnetization saturation value of 47.32 emu/g. UV-Vis DRS analysis indicated that NiFe2O4 nanoparticles had an optical band gap of 1.97 eV. The success of synthesis was also proven by the EDS analysis results, which showed that the synthesized NiFe2O4 nanoparticles composed of Ni, Fe, and O elements. The removal efficiency of Congo red dye was 96.80% at the following optimum conditions: solution pH of 5.0, H2O2 concentration of 2 mM, Congo red dye concentration of 100 mg/L, and contact time of 60 min. The study of the photodegradation kinetics follows a pseudo-first order reaction with a rate constant value of 0.0853 min−1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

2021 ◽  
Vol 926 (1) ◽  
pp. 012050
Author(s):  
Salni ◽  
M Said ◽  
P L Hariani ◽  
I Apriani

Abstract Fe3O4 has been synthesized using the combustion solution method using glycine as fuel. The Fe3O4 was used as a catalyst in the photocatalytic degradation of Congo red dye. The Fe3O4 were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), UV-Vis spectroscopy, and vibrating sample magnetometry (VSM). The characterization showed that Fe3O4 has an inverse spinel structure with a crystalline size of 35.6 nm. Fe3O4 has an optical band gap of 2.16 eV, and a saturation magnetization of 83.76 emu/g. The study showed that the highest photocatalytic degradation was at 90 min of irradiation time using visible light irradiation, the concentration of Congo red dye of 10 mg/L, and pH solution of 5, with a photocatalytic degradation efficiency of 97.70%. The experiment indicated that the photocatalytic degradation of the Congo red dye by Fe3O4 followed a pseudo-first-order. Fe3O4 is effective as an antibacterial against gram-positive bacteria (Streptococcus aureus) and gram-negative bacteria (Escherichia coli).


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 817 ◽  
Author(s):  
A. Luna-Flores ◽  
M.A. Morales ◽  
R. Agustín-Serrano ◽  
R. Portillo ◽  
J.A. Luna-López ◽  
...  

In this work, a novel route is discussed to produce in one step ZnO/Burkeite powders by the modified solution combustion method. The ZnO particles enhance the photocatalytic activity in the degradation of Rhodamine B, in which Burkeite mineral acts as a support due to the pH-dependent morphology of the particle aggregates of the as-synthesized powders. The X-ray diffraction (XRD) characterization shows the presence of a heterostructure: ZnO/Burkeite. The Scanning Electron Microscopy (SEM) image shows a morphological dependence with the pH of the solution used for the synthesis. The results show that the system with the highest degradation (92.4%) corresponds to the case in which ZnO/Burkeite heterostructure was synthesized with a pH 11.


NANO ◽  
2011 ◽  
Vol 06 (02) ◽  
pp. 139-144 ◽  
Author(s):  
S. P. CHANDINI SAM ◽  
V. S. PRASAD ◽  
K. SUDARSANA KUMAR

Combustion synthesis has emerged as a facile and economically viable technique for the preparation of advanced ceramics, catalysts and nanomaterials. This paper is the report of the investigations carried out on the synthesis of titania–rare-earth mixed oxide pigments: TiCe 1-x Pr x O 4-δ by the solution combustion method and their characterization by X-ray powder diffraction, transmission electron microscopy, reflectance spectral data, thermal analysis and surface area measurements. The synthesized nanopigments exhibit yellow to brick red color with the increase of praseodymium content. The dominant reflectance of these pigments lies above a wavelength of 600 nm. These pigments are found to be promising candidates as ecological pigments because of their high reflectance, lightness and intense coloration.


2011 ◽  
Vol 25 (22) ◽  
pp. 2949-2956 ◽  
Author(s):  
ALI MOHAMMADI ◽  
YADOLAH GANJKHANLOU ◽  
MAHMOOD KAZEMZAD ◽  
ABDOLMAJID BAYANDORI MOGHADDAM ◽  
FEREIDOUN ALIKHANI HESSARI ◽  
...  

In this work, various nano-sized samples of Y 2 O 3, Y 2 O 3 :Eu and Y 2 O 3 :Eu , Sr were prepared by urea solution combustion method. Then the resultant nanopowders were investigated by means of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and photo-luminescence emission spectra. Furthermore, the CIE color coordinate of samples were calculated from photoluminescence emission spectra. Results showed that by doping of strontium, the photoluminescence intensity and chromaticity of Y 2 O 3: Eu phosphor was enhanced while crystallite size was decreased.


2021 ◽  
Vol 33 (6) ◽  
pp. 1294-1298
Author(s):  
R. Raja ◽  
A. Rose Venis ◽  
R. Tamil Selvan ◽  
T. Mohandas

The Congo red dye was decolourized by advanced oxidation process using solar/H2O2 method and the effect of various parameters on decolourization like pH, H2O2 concentration, dye concentration, solar light intensity, additives, COD and TOC removal studies and kinetic studies were investigated. The photodegradation process was done by exposing dye solutions with the concentration of 100 mg/L treated with 50% H2O2 to sunlight with the lux intensity range of 60,000-90,000 lux. The best possible pH 2 with an optimal H2O2 concentration of 1000 mM to achieve 100% decolourization within the period of 5 h. The kinetic studies done on H2O2 concentration also proved that the high solar light intensity leads to higher decolourization and low solar light intensity leads to lesser decolourization. Addition of additives like H2PO4 – and Cl– leads to a decrease in the rate of decolourization. The removal of COD and TOC removal was found to be 83.26% and 5.18%, respectively.


2021 ◽  
Vol 30 ◽  
pp. 02010
Author(s):  
Irina Ryltsova ◽  
Evgenia Tarasenko ◽  
Olga Lebedeva

Layered double hydroxide containing Ni3+ (Mg/AlNi-LDH) was successfully synthesized by co-precipitation in an oxidizing media. The resulted product was characterized using X-ray diffraction, wavelength dispersive X-ray fluorescence spectrometry. The activity of Mg/AlNi-LDH in the process of photodegradation of Congo red dye using UV light irradiation was evaluated. The initial rate of photodegradation of the dye in the presence of LDH is 1.6 times higher than that of UV irradiated solution. The kinetic data obtained for photodegradation process can be adequately described by pseudo-first-order kinetic model. The presence of Mg/AlNi – LDH leads to increased photodegradation yield compared to destruction only by UV irradiation.


2020 ◽  
Vol 8 (9) ◽  
pp. 1294-1299
Author(s):  
Satyajeet M. Deshmukh ◽  
◽  
Vrushali N. Raut ◽  
Prashant M. Ingole ◽  
◽  
...  

Hydrodynamic cavitation (HC) has been applied in the present work for the degradation of Congo red dye. Initially, the Effect of dilution of the Dye on the efficiency of hydrodynamic cavitation has been studied using circular orifice as well as venturi as a cavitator. The process parameters such as initial dye concentration, solution pH, Hydraulic characteristics, comparative study of venturimeter and orificemeter, and flow rate were investigated in detail to evaluate their effects on the decolorization efficiency of Congo red Dye. In terms of removal rate and energy efficiency, an optimal inlet pressure value was found close to 0.4 MPa and cavitation number of 0.25. Maximum decolorization was obtained using orifice is 64%, and that of venturi is 73% in 90 min time at a temperature of 25±2°C.


2020 ◽  
Vol 59 (1) ◽  
pp. 131-143 ◽  
Author(s):  
Thanh Son Cam ◽  
Tatyana Alekseevna Vishnievskaia ◽  
Vadim Igorevich Popkov

AbstractA series of CuO/CeO2 catalysts were successfully synthesized via solution combustion method (SCS) using different fuels and tested for CO oxidation. The catalysts were characterized by energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), N2 adsorption-desorption isotherms and H2 temperature-programmed reduction (H2-TPR). It was found that the used fuels strongly affected the characterization and the low-temperature reduction behavior of CuO/CeO2 catalysts. The CuO/CeO2-urea catalyst exhibited higher catalytic activity toward CO oxidation (t50=120∘C, t100=159∘C) than the 5 other synthesized catalysts. In addition, the CuO/CeO2-urea catalyst displayed high stability for CO oxidation during five cycles and water resistance. The enhanced catalytic CO oxidation of the synthesized samples can be attributed by a combination of factors, such as smaller crystallite size, higher specific surface area, larger amount of amorphous copper(II) oxide, more mesoporous and uniform spherical-like structure. These findings are worth considering in order to continue the study of the CuO/CeO2 catalyst with low-temperature CO oxidation.


Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Saadia Lahreche ◽  
Imane Moulefera ◽  
Abdelkader El El Kebir ◽  
Lilia Sabantina ◽  
M’hamed Kaid ◽  
...  

The present work was aimed to evaluate the adsorption properties of activated carbons based on prickly pear seeds (PPS) and conductive polymer matrix based on polyaniline (PANI) for the removal of anionic Congo red (CR) dye from aqueous solutions. The adsorbent was prepared by polymerization of aniline in the presence of activated PPS by phosphoric acid and sodium hydroxide. The samples were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and the Brunauer–Emmett–Teller (BET) methods. The adsorption kinetics were studied using UV-visible (UV/Vis) spectroscopy. The characterization data suggest that the adsorption of the Congo red dye is enhanced because PANI chain molecules, which are especially accountable for removal through π—π interaction and H-bonding with the CR, are adsorbed/tethered onto the acid-activated PPS (PPSH), and thus surmount the mass transfer limitation by being best exposed to the CR-adsorbed molecule. The adsorption kinetics follows the pseudo-second order process. The correlation coefficients (R2) for Langmuir, Freundlich and Tempkin showed that the adsorption values obey Freundlich and Tempkin isotherm models. Moreover, the isotherm was most accurately described by the Freundlich model, and the maximum removal percentage was calculated to be 91.14% under optimized conditions of pH 6.6, 1 g/L of adsorbent dosage, and an initial CR dye concentration of 20 mg·L−1. Importantly, the hybrid adsorbent exhibited the highest adsorption capacity (80.15%) after five cycles of the adsorption–desorption process. Thermodynamic parameters, such as entropy changes, enthalpy changes and Gibbs free energy, were also evaluated. These results indicated that the PANI matrix can generally be better utilized for the removal of Congo red dye when appropriately dispersed on the surface of suitable support materials. These results provide a new direction to promote the separable adsorbents with increasing performance for adsorption of dye impurities from wastewater.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1467
Author(s):  
Mir Waqas Alam ◽  
Muhammad Aamir ◽  
Mohd Farhan ◽  
Maryam Albuhulayqah ◽  
Mohamad M. Ahmad ◽  
...  

The preparation, characterization, and application of Nickel oxide (NiO)–Copper oxide (CuO)–Zinc oxide (ZnO) transition nanometal oxides have significantly enhanced their tunable properties for superior multifunctional performances compared with well-known metal oxides. NiO–CuO–ZnO nano transition metal oxides were synthesized by a simple eco-friendly solution combustion method. X-ray diffraction studies revealed distinct phases such as monoclinic, cubic, and hexagonal wurtzite for CuO, NiO, and ZnO, respectively, with NiO having the highest composition. The particle sizes were found to be in the range between 25 and 60 nm, as determined by powder X-ray diffraction. The energy bandgap values were found to be 1.63, 3.4, and 4.2 eV for CuO, ZnO, and NiO, respectively. All metal oxides exhibited a moderate degradation efficiency for AR88 dye. The results of ultraviolet–visible absorption spectra helped identify the bandgap of metal oxides and a suitable wavelength for photocatalytic irradiation. Finally, we concluded that the electrochemical studies revealed that the synthesized materials are well suitable for sensor applications.


Sign in / Sign up

Export Citation Format

Share Document