scholarly journals Impact of Storm-Enhanced Density (SED) on Ion Upflow Fluxes During Geomagnetic Storm

Author(s):  
Shasha Zou ◽  
Jiaen Ren ◽  
Zihan Wang ◽  
Hu Sun ◽  
Yang Chen

The impact of the dynamic evolution of the Storm-Enhanced Density (SED) on the upward ion fluxes during the March 06, 2016 geomagnetic storm is studied using comprehensive multi-scale datasets. This storm was powered by a Corotating Interaction Region (CIR), and the minimum Sym-H reached ∼−110 nT. During the ionospheric positive storm phase, the SED formed and the associated plume and polar cap patches occasionally drifted anti-sunward across the polar cap. When these high-density structures encountered positive vertical flows, large ion upward fluxes were produced, with the largest upward flux reaching 3 × 1014 m−2s−1. These upflows were either the type-1 ion upflow associated with fast flow channels, such as the subauroral polarization stream (SAPS) channel, or the type-2 ion upflow due to soft particle precipitations in the cusp region. The total SED-associated upflow flux in the dayside cusp can be comparable to the total upflow flux in the nightside auroral zone despite the much smaller cusp area compared with the auroral zone. During the ionospheric negative storm phase, the ionospheric densities within the SED and plume decreased significantly and thus led to largely reduced upward fluxes. This event analysis demonstrates the critical role of the ionospheric high-density structures in creating large ion upward fluxes. It also suggests that the dynamic processes in the coupled ionosphere-thermosphere system and the resulting state of the ionospheric storm are crucial for understanding the temporal and spatial variations of ion upflow fluxes and thus should be incorporated into coupled geospace models for improving our holistic understanding of the role of ionospheric plasma in the geospace system.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 933
Author(s):  
Andrea Gila-Diaz ◽  
Gloria Herranz Carrillo ◽  
Pratibha Singh ◽  
David Ramiro-Cortijo

Cardiovascular disease remains a leading cause of mortality worldwide. Unresolved inflammation plays a critical role in cardiovascular diseases development. Specialized Pro-Resolving Mediators (SPMs), derived from long chain polyunsaturated fatty acids (LCPUFAs), enhances the host defense, by resolving the inflammation and tissue repair. In addition, SPMs also have anti-inflammatory properties. These physiological effects depend on the availability of LCPUFAs precursors and cellular metabolic balance. Most of the studies have focused on the impact of SPMs in adult cardiovascular health and diseases. In this review, we discuss LCPUFAs metabolism, SPMs, and their potential effect on cardiovascular health and diseases primarily focusing in neonates. A better understanding of the role of these SPMs in cardiovascular health and diseases in neonates could lead to the development of novel therapeutic approaches in cardiovascular dysfunction.


2021 ◽  
Vol 13 (8) ◽  
pp. 4280
Author(s):  
Yu Sang Chang ◽  
Sung Jun Jo ◽  
Yoo-Taek Lee ◽  
Yoonji Lee

A large number of articles have documented that as population density of cities increases, car use declines and public transit use rises. These articles had a significant impact of promoting high-density compact urban development to mitigate traffic congestion. Another approach followed by other researchers used the urban scaling model to indicate that traffic congestion increases as population size of cities increases, thus generating a possible contradictory result. Therefore, this study examines the role of both density and population size on traffic congestion in 164 global cities by the use of Stochastic Impacts by Regression on Population, Affluence and Technology model. We divide 164 cities into the two subgroups of 66 low density cities and 98 high density cities for analysis. The findings from the subgroups analysis indicated a clear-cut difference on the critical role of density in low-density cities and the exclusive role of population size in high-density cities. Furthermore, using threshold regression model, 164 cities are divided into the two regions of large and small population cities to determine population scale advantage of traffic congestion. Our findings highlight the importance of including analysis of subgroups based on density and/or population size in future studies of traffic congestion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Debanjan Banerjee ◽  
K. S. Meena

The Coronavirus disease 2019 (COVID-19) pandemic has emerged as a significant and global public health crisis. Besides the rising number of cases and fatalities, the outbreak has also affected economies, employment and policies alike. As billions are being isolated at their homes to contain the infection, the uncertainty gives rise to mass hysteria and panic. Amidst this, there has been a hidden epidemic of “information” that makes COVID-19 stand out as a “digital infodemic” from the earlier outbreaks. Repeated and detailed content about the virus, geographical statistics, and multiple sources of information can all lead to chronic stress and confusion at times of crisis. Added to this is the plethora of misinformation, rumor and conspiracy theories circulating every day. With increased digitalization, media penetration has increased with a more significant number of people aiding in the “information pollution.” In this article, we glance at the unique evolution of COVID-19 as an “infodemic” in the hands of social media and the impact it had on its spread and public reaction. We then look at the ways forward in which the role of social media (as well as other digital platforms) can be integrated into social and public health, for a better symbiosis, “digital balance” and pandemic preparedness for the ongoing crisis and the future.


2020 ◽  
Author(s):  
Guillaume Jacquemin ◽  
Annabelle Wurmser ◽  
Mathilde Huyghe ◽  
Wenjie Sun ◽  
Meghan Perkins ◽  
...  

AbstractTumours are complex ecosystems composed of different types of cells that communicate and influence each other. While the critical role of stromal cells in affecting tumour growth is well established, the impact of mutant cancer cells on healthy surrounding tissues remains poorly defined. Here, we uncovered a paracrine mechanism by which intestinal cancer cells reactivate foetal and regenerative Yap-associated transcriptional programs in neighbouring wildtype epithelial cells, rendering them adapted to thrive in the tumour context. We identified the glycoprotein Thrombospondin-1 (Thbs1) as the essential factor that mediates non-cell autonomous morphological and transcriptional responses. Importantly, Thbs1 is associated with bad prognosis in several human cancers. This study reveals the Thbs1-YAP axis as the mechanistic link mediating paracrine interactions between epithelial cells, promoting tumour formation and progression.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Salma S. Abed

Purpose The Covid-19 pandemic has affected every aspect of human life. Even though the pandemic length was not too long, a huge volume of research relating to Covid-19 has been published in different contexts. This paper aims to review the literature investigating the impact of Covid −19 on businesses generally and explore studies examining the technology role of business survival during the Covid-19 lockdowns specifically. Design/methodology/approach This study implemented the concept of a systematic review approach to review the literature that has been conducted in the business field during the Covid-19 crisis in general. Additionally, it looks into the research examining the role of technology in business survival in the Covid-19 crisis specifically. All studies were conducted in 2020. A total of 53 studies were identified and categorised into different themes. The research methods, theories and locations have also been analysed. Findings It was found that Covid-19 pandemic has affected all business sectors in several ways. Technology adoption has a critical role for business survival during the Covid-19 crises especially with small businesses. Very limited research has been conducted on the adoption of different technologies during the Covid-19 lockdowns. Originality/value This study presents the most frequent themes and topics that have been explored in the literature during the Covid-19 crisis in the business field. It highlights the methods used in addition to the theories and research locations present in this literature. Finally, it proposes the possible implications of this literature review.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Tanyeri ◽  
B Keskin ◽  
O Y Akbal ◽  
A Hakgor ◽  
A Karagoz ◽  
...  

Abstract Background and aim In this study we evaluated the impact of the updated pulmonary hypertension (PH) definitive criteria proposed in 6th World PH Symposium (WSPH) on numbers and frequencies of and pre- versus post-capillary PH as compared to those in European Society of Cardiology (ESC) 2015 PH Guidelines. Methods Study group comprised the retrospectively evaluated 1299 patients (pts) (age 53.1±18.8 years, female 807, 62.1%) who underwent right heart catheterisation (RHC) with different indications between 2006 and 2018. For ESC and WSPH PH definitions, pulmonary arterial mean pressure (PAMP) ≥25 mmHg (definition-A) and PAMP >20 mmHg (definition-B) RHC criteria were used, respectively. For pre-capillary PH definitions, pulmonary artery wedge pressure (PAWP) ≤15 mmHg and pulmonary vascular resistance (PVR) ≥3 Wood units criteria were included in the both definitions. Results In RHC assessments, PAMP ≥25 mmHg and >20 mmHg were noted in 891 (68.6%) and 1051 (80.9%) of overall pts, respectively. Moreover, pre-capillary PH was diagnosed in 284 (21.8%) and 298 (22.9%) with definition-A and B, respectively. Although updated WSPH definition was associated with a net 12.3% and a relative 18% increase in the overall PH diagnosis, net and relative changes in the frequency of the pre-capillary PH were only 1% and 4.9%. Increase in the overall PH with updated WSPH criterias compared to previous ESC definitions was associated with increase in the number of pre-capillary PH (n=298, 22.9%) but not in the overall frequency of post-capillary PH (688, 52.9%). Because PVR was the product of the transpulmonary gradient (PAMP minus PAWP) divided by cardiac output, this measure was found to keep specificity for distinction between pre- versus post-capillary PH even after lowering thetreshold diagnostic for PAMP from 25 to 20 mmHg. Conclusions Although updated WSPH definition was associated with net 12.3% and relative 18% increase in the overall PH diagnosis, its impact on frequencies of pre- versus post-capillary PH within overall PH population was negligible.These seem to be due to critical role of PVR ensuring specificity in pre-capillary PH diagnosis even after lowering the definitive PAMP treshold to 20 mmHg.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qing Xia ◽  
Tao Han ◽  
Pinghua Yang ◽  
Ruoyu Wang ◽  
Hengyu Li ◽  
...  

Background. MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods. Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results. Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC’s self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC’s self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion. Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.


2020 ◽  
Vol 21 (16) ◽  
pp. 5781
Author(s):  
Ai-Young Lee

MicroRNAs (miRNAs), which mostly cause target gene silencing via transcriptional repression and degradation of target mRNAs, regulate a plethora of cellular activities, such as cell growth, differentiation, development, and apoptosis. In the case of skin keratinocytes, the role of miRNA in epidermal barrier integrity has been identified. Based on the impact of key genetic and environmental factors on the integrity and maintenance of skin barrier, the association of miRNAs within epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids is reviewed. The critical role of miRNAs in the epidermal barrier extends the use of miRNAs for control of relevant skin diseases such as atopic dermatitis, ichthyoses, and psoriasis via miRNA-based technologies. Most of the relevant miRNAs have been associated with keratinocyte differentiation and proliferation. Few studies have investigated the association of miRNAs with structural proteins of corneocytes and cornified envelopes, cell–cell adhesion, and skin lipids. Further studies investigating the association between regulatory and structural components of epidermal barrier and miRNAs are needed to elucidate the role of miRNAs in epidermal barrier integrity and their clinical implications.


2020 ◽  
Vol 117 (43) ◽  
pp. 26756-26765
Author(s):  
Botai Xuan ◽  
Deepraj Ghosh ◽  
Joy Jiang ◽  
Rachelle Shao ◽  
Michelle R. Dawson

Polyploidal giant cancer cells (PGCCs) are multinucleated chemoresistant cancer cells found in heterogeneous solid tumors. Due in part to their apparent dormancy, the effect of PGCCs on cancer progression has remained largely unstudied. Recent studies have highlighted the critical role of PGCCs as aggressive and chemoresistant cancer cells, as well as their ability to undergo amitotic budding to escape dormancy. Our recent study demonstrated the unique biophysical properties of PGCCs, as well as their unusual migratory persistence. Here we unveil the critical function of vimentin intermediate filaments (VIFs) in maintaining the structural integrity of PGCCs and enhancing their migratory persistence. We performed in-depth single-cell analysis to examine the distribution of VIFs and their role in migratory persistence. We found that PGCCs rely heavily on their uniquely distributed and polarized VIF network to enhance their transition from a jammed to an unjammed state to allow for directional migration. Both the inhibition of VIFs with acrylamide and small interfering RNA knockdown of vimentin significantly decreased PGCC migration and resulted in a loss of PGCC volume. Because PGCCs rely on their VIF network to direct migration and to maintain their enlarged morphology, targeting vimentin or vimentin cross-linking proteins could provide a therapeutic approach to mitigate the impact of these chemoresistant cells in cancer progression and to improve patient outcomes with chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document