scholarly journals Simulation and surface topology of activity of pyrazoloquinoline derivatives as corrosion inhibitor on the copper surfaces

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Razieh Razavi ◽  
Savaş Kaya ◽  
Mahboobeh Zahedifar ◽  
Sayed Ali Ahmadi

AbstractIn the present study, corrosion inhibition performances of some pyrazolo [3,4-b] quinoline-3,5-dione derivatives against the corrosion of copper metal were investigated using B3LYP/6-311++g(d,p) calculation level in aqueous media. Additionally, interaction energies were calculated for all the pyrazoloquinoline derivatives compounds. In the calculations it is observed that studied molecules adsorb on metal surface with the help of electron donor heteroatoms in their molecular structures. Chemical thermodynamic parameters regarding the interaction between inhibitor molecule and copper surface were estimated and discussed. Density of the electron profile analysis and chemical electrostatic potential of nuclear charges in the molecule were applied to consider the nature of a number of probable interactions between Cu metal surface and inhibitors in terms of bond critical point (BCP). Calculated quantum chemical parameters showed that the pyrazoloquinoline derivatives including the OH and NO2 exhibit high inhibition performance.

2021 ◽  
Author(s):  
Razieh Razavi ◽  
Mahboobeh Zahedifar ◽  
Sayed Ali Ahmadi

Abstract In the present study, interactions of pyrazolo [3,4-b]quinoline-3,5-dione derivatives on copper metal surface were considered using B3LYP/6-311 + + g(d,p) in water media and also interaction energies were simulated for all the chemical coordination’s of pyrazoloquinoline derivatives compounds. Moreover the original and novel results revealed that in all the chemical side effects and cases, pyrazoloquinoline derivatives compounds were located on the Cu metal surface. This shows that the most important desired direction is where the concentrated numbers of electron donor active atoms of inhibitor molecules interacted with the Cu metal surface atom. Furthermore the chemical Thermodynamic parameters were estimated for example: ∆G of chemical inhibitor complexes with the Cu metal surface. Density of the electron profile analysis and chemical electrostatic potential of nuclear charges in the molecule were applied to consider the nature of a number of probable interactions between Cu metal surface and inhibitors in terms of bond critical point (BCP). Finally chemical electronics parameters showed that the OH and NO2 pyrazoloquinoline derivatives have best interaction in chemical and surface media.


2020 ◽  
Vol 4 (3) ◽  
pp. 154-161
Author(s):  
Anthony Victor Gambo

The effect of extract of Acacia Nolitica pod on the corrosion inhibition of LM 6 aluminium alloy in 1M NaOH was studied using weight loss, gasometric, and open circuit potential techniques. Corrosion rates were found to reduce in the presence of the inhibitor. The inhibition efficiency was found to increase with increase in the concentration of the inhibitor and decreased with increase in the temperature. Thermodynamic parameters showed that the adsorption of the inhibitor on the metal surface is a spontaneous process and that the adsorption was via a physisorption mechanism. The adsorption process fitted perfectly with the Langmuir adsorption isotherm indicating that the extract was strongly adsorbed on the aluminium alloy surface. Morphology of the surface was examined by scanning electron microscopy (SEM) in the absence and presence of 0.5%v/v of the used inhibitor which confirmed the existence of a protective film of inhibitor molecule on the metal surface.  


Author(s):  
Fatah Chiter ◽  
Dominique Costa ◽  
Vincent Maurice ◽  
Philippe Marcus

Abstract A key factor for effective inhibition by organic molecules of the initiation of localized corrosion by pitting is their ability to form a protective organic film in locally de-passivated zones exposing the bare metal next to the oxide-covered surface. Herein, based on quantum chemical DFT calculations, we study the chemistry of the interface between 2-mercaptobenzimidazole (MBI) and a copper surface partially covered by a Cu2O passive oxide film. The results show the adaptability of the molecule to adsorb strongly on the different zones, oxide or metal, of a locally de-passivated surface. However, differences in the local adsorption configurations, involving covalent bonding with H-bonding depending on oxide or metal and on conformer, thione or thiolate, lead to the formation of an inhomogeneous organic film. Increasing order of local adsorption strength is oxide walls < metal surface < oxide surface < oxide edges for the thione species, whereas there is no significant difference of local adsorption strength for the thiolate species. Our results suggest that both species of MBI can heal the oxygen and copper low coordinated sites as well as can protect the exposed metal surface, thus enhancing the barrier properties of the passivated surface even when locally defective.


2017 ◽  
Vol 5 (3) ◽  
Author(s):  
Nicholas Clegg ◽  
Krishna Kota ◽  
Xin He ◽  
Sean Ross

Altering the wetting characteristics of copper will positively impact numerous practical applications. The contact angle (CA) of a water droplet on the polished copper surface is usually between 70 deg and 80 deg. This paper discusses a facile, scalable, tuned bulk micromanufacturing approach for altering the surface topology of copper concomitantly at the micro- and nano-length scales, and thus significantly influence its wetting characteristics. The resultant copper surfaces were found to be robust, nontoxic, and exhibited ultra-omniphilicity to various industrial liquids. This extreme wetting ability akin to a paper towel (CA of zero for multiple liquids) was achieved by tuning the bulk micromanufacturing process to generate connected hierarchical micro- and nano-roughness with nanocavities within the embryos of microcavities. With an adsorbed coating of ester, the same ultra-omniphilic copper surfaces were found to exhibit robust super-hydrophobicity (CA ∼ 152 deg for water).


Author(s):  
Adam R. Girard ◽  
Jinsub Kim ◽  
Seung M. You

The effect of wettability on boiling heat transfer (BHT) coefficient and critical heat flux (CHF) in pool boiling of water on hydrophilic surfaces having different contact angles was investigated. Hot alkali solutions were utilized to promote cupric and cuprous oxide growth which exhibited micro and nanoscale structures on copper surfaces, with thicknesses on the order of a couple of micrometers. These structure and surface energy variations result in different levels of wettability and roughness while maintaining the effusivity of the bare copper surface. The study showed that the BHT coefficient has an inverse relationship to wettability; the BHT coefficient decreases as wettability increases. Furthermore, it was shown that this dependency between BHT coefficient and wettability is more significant than the relationship between BHT coefficient and surface roughness. The CHF was also found to increase with increases in wettability and roughness. For the most hydrophilic surface tested in this study, CHF values were recorded near the 2,000 kW/m2 mark. This value is compared with maximum values reported in literature for water on non-structured flat surfaces without area enhancements. Based on these results it is postulated that there exists a true hydrodynamic CHF limit for pool boiling with water on flat surfaces, very near 2,000 kW/m2, independent of heater material, representing an 80% increase in the limit suggested by Zuber [1].


2000 ◽  
Vol 612 ◽  
Author(s):  
G.P. Beyer ◽  
M. Baklanov ◽  
T. Conard ◽  
K. Maex

AbstractIt was found that copper surfaces, which had been exposed to a clean room atmosphere, were covered by a layer, whose chemical composition can be described by Cu(OH)2·CuCO3. This layer can effectively be removed by either a short thermal treatment in vacuum at 350°C, a hydrogen plasma treatment, or a combination of both. Ex-situ photoelectron spectroscopy measurements show little difference of the chemical composition of the surface after the respective treatments. The thermal treatment, however, gives rise to re-crystallisation of the copper film due to the difference in temperature of deposition and the anneal. Ex-situ ellipsometry measurements indicate that the hydrogen plasma not only removes Cu(OH)2·CuCO3 but also passivates the copper surface.


2009 ◽  
Vol 74 ◽  
pp. 133-136 ◽  
Author(s):  
Ang Xiao Fang ◽  
Jun Wei ◽  
Chen Zhong ◽  
Wong Chee Cheong

Typically, copper material is used as a bonding material in MEMs devices for its excellent mechanical, electrical and hermetic properties. Direct copper bonding, however, requires high temperature (>300°C) to forge a bond due to the oxidative nature of copper. In this study, using an alternative approach based on an organic monolayer coating, we demonstrate metallurgical bonding between two copper surfaces under ambient condition at low bonding temperature below 140°C, while maintaining reliable mechanical joint integrity of 50MPa. This monolayer is believed to behave as a passivation layer, protecting the copper surface against oxidation under ambient conditions. In contrast to a bulk oxide layer, this layer can be easily displaced during mechanical deformation at the bonding interface.


RSC Advances ◽  
2016 ◽  
Vol 6 (72) ◽  
pp. 68351-68356 ◽  
Author(s):  
Liang Cai ◽  
Xue-Qing Feng ◽  
Xin Hua ◽  
Xiao-Peng He ◽  
Yi-Tao Long ◽  
...  

Surface chelation has been demonstrated to be a promising strategy to address repulsion between protonated corrosion inhibitors and ionized copper surfaces in acids.


Author(s):  
Farooq Riaz Siddiqui ◽  
Chi Yan Tso ◽  
Sau Chung Fu ◽  
Huihe Qiu ◽  
Christopher Yu Hang Chao

Abstract Droplet evaporation is an efficient process as it removes a large amount of heat by using the latent energy, making it suitable for heat transfer applications. In this research, evaporation of the silver-graphene hybrid nanofluid (SGHF) droplet, because of its synergistic thermal conductivity, is investigated for substrate temperature in a range of 25–100 °C. The experiments for droplet evaporation were performed in an environmental facility for two droplet sizes, 3 μL and 30 μL volume, on a copper plate. A 100 W silicone heater mat was used to heat the copper plate from the underside, while two T-type thermocouples were used to monitor its surface temperature. As droplet evaporation ended, a porous residue was formed on the copper surface. Subsequently, a 3 μL volume of the SGHF droplet was dispensed on the porous residue surface. The results showed a tremendous rise in the evaporation rate (up to 160%) for the subsequent SGHF droplet sitting on the porous residue as compared to the non-wetted copper surface. Moreover, the evaporation rate of the SGHF droplet on the copper surface increased up to 56% as compared to the water droplet for a substrate temperature range of 25–100 °C.


Sign in / Sign up

Export Citation Format

Share Document