scholarly journals Seismic Behavior of Stone Masonry Joints with ECC as a Filling Material

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6671
Author(s):  
Wei Hou ◽  
Xinghua Dai ◽  
Zheyu Yang ◽  
Hanhuang Huang ◽  
Xiaoli Wang ◽  
...  

This paper investigates the seismic behavior of novel stone masonry joints using ductile engineered cementitious composite (ECC) as a substitute for ordinary mortar. Ten stone masonry joints with different types of mortar/ECC were tested under axial and cyclic loads. The filling materials of mortar joints tested included ordinary mortar, polymer mortar, ECC, and composite mortar with two combination proportions of ECC and ordinary mortar. The test results indicated that ECC specimens exhibited a more stable hysteretic response as well as an improvement in strength, deformation, energy dissipation, and strength degradation. The ECC mortar joints maintained integrity during the entire loading process due to the “self-confinement” effect of ECC. A partial substitution of mortar with ECC could provide effective reinforcement and confinement to prevent mortar failure and peeling, thereby allowing such specimens to approach the seismic performance of ECC specimens. Based on the trend of shear strength variations, a corresponding failure process is defined for ECC/mortar joints under cyclic and axial compressive loads, including four distinct stages: linear elastic, crack-developing stage, interface debonding, and friction sliding. New equations are proposed for predicting the shear strength and residual shear strength of the ECC/mortar joints on the basis of the test results, which are validated in the composite mortar specimens.

2008 ◽  
Vol 33-37 ◽  
pp. 617-622
Author(s):  
Wei Shen Zhu ◽  
Bin Sui ◽  
Wen Tao Wang ◽  
Shu Cai Li

Two-phase modelling testing was performed to study the shear strength of rock bridges of jointed rock mass in this paper. The failure process of rock sample containing multiple collinear cracks was observed. Based on theory of fracture mechanics and analytical method, a rock-bridge failure model was proposed and the expression of shear strength was derived. Comparison of calculated shear strength and the model test results was made and they agree well.


2018 ◽  
Vol 18 (12) ◽  
pp. 3343-3353 ◽  
Author(s):  
Miao Yu ◽  
Yu Huang ◽  
Wenbin Deng ◽  
Hualin Cheng

Abstract. Flow-like landslides, such as flow slides and debris avalanches, have caused serious infrastructure damage and casualties for centuries. Effective numerical simulation incorporating accurate soil mechanical parameters is essential for predicting post-failure landslide mobility. In this study, smoothed particle hydrodynamics (SPH) incorporating soil ring shear test results were used to forecast the long-runout mobility for a landslide on an unstable slope in China. First, a series of ring shear tests under different axial stresses and shear velocities were conducted to evaluate the residual shear strength of slip zones after extensive shear deformation. Based on the ring shear test results, SPH modeling was conducted to predict the post-failure mobility of a previously identified unstable slope. The results indicate that the landslide would cut a fire service road on the slope after 12 s and cover an expressway at the foot of that slope after 36 s. In the model, the landslide would finally stop sliding about 38 m beyond the foot of the slope after 200 s. This study extends the application of the SPH model from disaster simulations to predictive analysis of unstable landslide. In addition, two sets of comparative calculations were carried out which demonstrate the robustness of the SPH method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mingke Deng ◽  
Yangxi Zhang

This study mainly aims to investigate the effectiveness of high-ductile fiber-reinforced concrete (HDC) as a means to enhance the seismic performance of short columns. Six HDC short columns and one reinforced concrete (RC) short column were designed and tested under lateral cyclic loading. The influence of the material type (concrete or HDC), axial load, stirrup ratio, and shear span ratio on crack patterns, hysteresis behavior, shear strength, deformation capacity, energy dissipation, and stiffness degradation was presented and discussed, respectively. The test results show that the RC short column failed in brittle shear with poor energy dissipation, while using HDC to replace concrete can effectively improve the seismic behavior of the short columns. Compared with the RC short column, the shear strength of HDC specimens was improved by 12.6–30.2%, and the drift ratio and the energy dissipation increases were 56.9–88.5% and 237.7–336.7%, respectively, at the ultimate displacement. Additionally, the prediction model of the shear strength for RC columns based on GB50010-2010 (Chinese code) can be safely adopted to evaluate the shear strength of HDC short columns.


2018 ◽  
Author(s):  
Miao Yu ◽  
Yu Huang ◽  
Wenbin Deng ◽  
Hualin Cheng

Abstract. Flowlike landslides, such as flowslides and debris avalanches, have caused serious infrastructure damage and casualties for centuries. Effective numerical simulation incorporating accurate soil mechanical parameters is essential for predicting post-failure landslide mobility. In this study, smoothed particle hydrodynamics (SPH) incorporating soil ring shear test results was used to forecast the long-runout mobility for a landslide on an unstable slope in China. First, a series of ring shear tests under different axial stresses and shear velocities were conducted to evaluate the residual shear strength of slip zones after extensive shear deformation. Based on the ring shear test results, SPH modeling was conducted to predict the post-failure mobility of a previously identified unstable slope. The results indicate that the landslide would cut a fire road on the slope after 12 s and cover an expressway at the foot of that slope after 36 s. In the model, the landslide would finally stop sliding about 25 m beyond the foot of the slope after 120 s. This study shows that combining the SPH method with ring shear test results to forecast landslide mobility can provide basic information for landside disaster mitigation.


2021 ◽  
Vol 13 (14) ◽  
pp. 7758
Author(s):  
Biao Qian ◽  
Wenjie Yu ◽  
Beifeng Lv ◽  
Haibo Kang ◽  
Longxin Shu ◽  
...  

To observe the effect of recycled sand and nano-clay on the improvement of the early strength of soil-cement (7d), 0%, 10%, 15% and 20% recycled sand were added. While maintaining a fixed moisture content of 30%, the ratios of each material are specified in terms of soil mass percentage. The shear strength of CSR (recycled sand blended soil-cement) was investigated by direct shear test and four groups of specimens (CSR-1, CSR-2, CSR-3 and CSR-4) were obtained. In addition, 8% nano-clay was added to four CSR groups to obtain the four groups of CSRN-1, CSRN-2, CSRN-3 and CSRN-4 (soil-cement mixed with recycled sand and nano-clay), which were also subjected to direct shear tests. A detailed analysis of the modification mechanism of soil-cement by recycled sand and nano-clay was carried out in combination with scanning electron microscopy (SEM) and IPP (ImagePro-Plus) software. The test results showed that: (1) CSR-3 has the highest shear strength due to the “concrete-like” effect of the incorporation of recycled sand. With the addition of 8% nano-clay, the overall shear strength of the cement was improved, with CSRN-2 having the best shear strength, thanks to the filling effect of the nano-clay and its high volcanic ash content. (2) When recycled sand and nano-clay were added to soil-cement, the improvement in shear strength was manifested in a more reasonable macroscopic internal structure distribution of soil-cement. (3) SEM test results showed that the shear strength was negatively correlated with the void ratio of its microstructure. The smaller the void ratio, the greater the shear strength. This shows that the use of reclaimed sand can improve the sustainable development of the environment, and at the same time, the new material of nano-clay has potential application value.


2021 ◽  
Vol 11 (6) ◽  
pp. 2736
Author(s):  
Min Sook Kim ◽  
Young Hak Lee

In this study, the structural behavior of reinforced concrete flat plates shear reinforced with vertical grids made of a glass fiber reinforced polymer (GFRP) was experimentally evaluated. To examine the shear strength, experiments were performed on nine concrete slabs with different amounts and spacings of shear reinforcement. The test results indicated that the shear strength increased as the amount of shear reinforcement increased and as the spacing of the shear reinforcement decreased. The GFRP shear reinforcement changed the cracks and failure mode of the specimens from a brittle punching to flexure one. In addition, the experimental results are compared with a shear strength equation provided by different concrete design codes. This comparison demonstrates that all of the equations underestimate the shear strength of reinforced concrete flat plates shear reinforced with GFRP vertical grids. The shear strength of the equation by BS 8110 is able to calculate the punching shear strength reasonably for a concrete flat plate shear reinforced with GFRP vertical grids.


2013 ◽  
Vol 438-439 ◽  
pp. 749-755 ◽  
Author(s):  
Tong Hao ◽  
Dong Li

By the experimental studying on the basic mechanical properties of recycled concrete hollow block masonry, the compressive and shear behavior of recycled aggregate concrete hollow block masonry under different mortar strength were analyzed. Research indicated that the compressive and shear behavior of recycled aggregate concrete hollow block masonry was similar to that of ordinary concrete hollow block masonry. The normal formula was recommended to calculate the compressive strength of the masonry. The shear strength of the masonry was affected by the mortar strength. The shear strength calculation formula of recycled concrete hollow block masonry was proposed according to the formula of masonry design code. The calculating results were in good agreement with the test results.


2015 ◽  
Vol 52 (2) ◽  
pp. 198-210 ◽  
Author(s):  
Hisham T. Eid ◽  
Ruslan S. Amarasinghe ◽  
Khaled H. Rabie ◽  
Dharma Wijewickreme

A laboratory research program was undertaken to study the large-strain shear strength characteristics of fine-grained soils under low effective normal stresses (∼3–7 kPa). Soils that cover a wide range of plasticity and composition were utilized in the program. The interface shear strength of these soils against a number of solid surfaces having different roughness was also investigated at similar low effective normal stress levels. The findings contribute to advancing the knowledge of the parameters needed for the design of pipelines placed on sea beds and the stability analysis of shallow soil slopes. A Bromhead-type torsional ring-shear apparatus was modified to suit measuring soil–soil and soil–solid interface residual shear strengths at the low effective normal stresses. In consideration of increasing the accuracy of assessment and depicting the full-scale field behavior, the interface residual shear strengths were also measured using a macroscale interface direct shear device with a plan interface shear area of ∼3.0 m2. Correlations are developed to estimate the soil–soil and soil–solid interface residual shear strengths at low effective normal stresses. The correlations are compared with soil–soil and soil–solid interface drained residual shear strengths and correlations presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document