scholarly journals Application of Nanoparticles in the Treatment of Lung Cancer With Emphasis on Receptors

2022 ◽  
Vol 12 ◽  
Author(s):  
Jingyue Wang ◽  
Tong Zhou ◽  
Ying Liu ◽  
Shuangmin Chen ◽  
Zhenxiang Yu

Lung cancer is one of the malignant tumors that has seen the most rapid growth in terms of morbidity and mortality in recent years, posing the biggest threat to people’s health and lives. In recent years, the nano-drug loading system has made significant progress in the detection, diagnosis, and treatment of lung cancer. Nanomaterials are used to specifically target tumor tissue to minimize therapeutic adverse effects and increase bioavailability. It is achieved primarily through two mechanisms: passive targeting, which entails the use of enhanced penetration and retention (EPR) effect, and active targeting, which entails the loading recognition ligands for tumor marker molecules onto nanomaterials. However, it has been demonstrated that the EPR effect is effective in rodents but not in humans. Taking this into consideration, researchers paid significant attention to the active targeting nano-drug loading system. Additionally, it has been demonstrated to have a higher affinity and specificity for tumor cells. In this review, it describes the development of research into active targeted nano-drug delivery systems for lung cancer treatment from the receptors’ or targets’ perspective. We anticipate that this study will help biomedical researchers use nanoparticles (NPs) to treat lung cancer by providing more and novel drug delivery strategies or solid ligands.

2019 ◽  
Vol 7 (2) ◽  
pp. 35-38
Author(s):  
Tosha Pandya ◽  
Kaushika Kaushika Patel ◽  
Rudree Pathak ◽  
Shreeraj Shah

In Cancer therapy, Nano drug delivery system comprising of Liposomes, are the most successful mode of treatment in present scenario which also has real time clinical application. Recently it is found that the closed bilayer phospholipid vesicles have many technical advantages over the initially used liposomal formulations. The delivery of therapeutics encapsulated in liposomes changes the biological distribution profile and improves the drug therapeutic indices of various drugs. This review article throws light onto many clinical liposomal drug delivery products. The liposome Nano drug delivery by the active and passive targeting is a boon as it can reduce the off-targeting effects. The current development is more focused on the diagnostic and clinical applications. Receptor targeted delivery systems are extensively explored for active targeting. However, these delivery systems are rarely seen in the clinical application because of conjugation chemistry and other implicit hurdles to develop this system.The development of nanocarriers in the cancer treatment have enormous potential in the medical field. Moreover, Immuno liposomes have been used in cancer treatment as attractive drug targeting vehicles. On the other hand, there are many other liposomal drug delivery systems having passive targeting mechanism for cancer treatment which are widely used due to enhanced retention and permeability of formulation. This review majorly focuses on the current challenges encountered in development of liposomal Nano drug delivery systems and its effective development for cancer treatment.


2017 ◽  
Vol 23 (3) ◽  
pp. 481-494
Author(s):  
Huang-Ping Yu ◽  
Ibrahim A. Aljuffali ◽  
Jia-You Fang

Different types of injectable nanoparticles, including metallic nanoparticles, polymeric nanocarriers, dendrimers, liposomes, niosomes, and lipid nanoparticles, have been employed to load drugs for lung delivery. Nanoparticles used for lung delivery offer some benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tumor targeting, and minimal side effects. In recent years, the concept of using injectable nanocarriers as vehicles for drug delivery has attracted increasing attention. This review highlights recent developments using nanomedical approaches for drug targeting to the lungs. We systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for lung cancer therapy. Passive targeting by modulating the nanoparticulate structure and the physicochemical properties is an option for efficient drug delivery to the lungs. In addition, active targeting such as antibody or peptide conjugation to nanoparticles is another efficient way to deliver the drugs to the targeted site. This review describes various nanocarriers loaded with anticancer drugs for passive or active targeting of lung malignancy. In this review, we principally focus on the nanomedical application in animal studies. The article excludes investigations limited to cell-based experiments. The review ends by anticipating future developments and trends.


2017 ◽  
Vol 23 (3) ◽  
pp. 454-466 ◽  
Author(s):  
Daniele R. Nogueira-Librelotto ◽  
Cristiane F. Codevilla ◽  
Ammad Farooqi ◽  
Clarice M. B. Rolim

A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 367-370
Author(s):  
Kinjal Patel ◽  
Devanshi Patel

Worldwide, cancer is one of the leading causes of mortality and cancer rates are set to increase at alarming rate globally. There are various types of cancer in which the leading type is the lung cancer.   In recent years lipid-based carriers, such as liposomes, have successfully encapsulated chemotherapeutic agents ameliorating some toxicity issues, while enhancing the overall therapeutic activity in cancer patients. In addition to this, nanomaterials can help to improved half-life in the body, morphology, for increased drug loading and many other ways. The survey discussed in this review will lead the anticancer therapy and cancer management which will provide the platform to the next generation.  Therefore, this critical review includes the therapeutic interventions, liposomes target delivery, active and passive drug loading. Finally, we attempt to summarize the current challenges in nanotherapeutics and provide an outlook on the future of this important field. Keywords: Drug Delivery, Liposomes target Delivery, Nanostructures, Drug loading


2021 ◽  
Vol 21 (2) ◽  
pp. 909-913
Author(s):  
Bin Pan ◽  
Peipei Li ◽  
Jing Chen ◽  
Jian Sun ◽  
Na Huang

In recent years, nanotechnology has made great progress in the development and application of tumor detection, diagnosis, and treatment, and eventually formed a “tumor nanomedicine.” The emerging field of “materials.” Nanoparticles have attracted much attention because they can overcome physiological barriers, effectively deliver hydrophobic drugs, and specifically target tumor tissues. At present, nanomedicines mainly include lipid nanoparticles, polymer nanoparticles granules, gold nanoparticles, magnetic nanoparticles, mesoporous silica, and other dosage forms. The use of nanomaterials as carriers in the treatment of lung cancer has unique advantages in achieving targeted drug delivery, slow-release drugs, and improvement of poorly soluble drugs and peptide drugs show obvious advantages in terms of bioavailability and reduction of adverse reactions, and have broad research and development prospects. This paper reports a new type of self-assembled Ptx-SA drug-loaded nanometers based on the carrier-free concept fiber, and it was found that the drug-loaded fiber has better cellophilicity, anti-tumor effect in vitro and in vivo than naked drug, and may be mediated by regulating the expression of related proteins. Therefore, the paclitaxel-loaded nano drug delivery system serves as a new type of nano preparation for treating lung cancer is worth further research.


2019 ◽  
Vol 26 (14) ◽  
pp. 2410-2429 ◽  
Author(s):  
Lin Dai ◽  
Chuanling Si

Background:Cellulose being the first abundant biopolymers in nature has many fascinating properties, including low-cost, good biodegradability, and excellent biocompatibility, which made cellulose a real potential material to create nano-drug delivery systems (nano-DDS). This review aims to present and discuss some remarkable recent advances on the drug delivery applications of cellulosebased prodrugs and nanoparticles.Methods:By searching the research literatures over last decade, a variety featured studies on cellulosebased nano-DDS were summarized and divided into prodrugs, prodrug nanoparticles, solid or derivative nanopartilces, amphiphilic copolymer nanoparticles, and polyelectrolyte complex nanoparticles. Various methods employed for the functionalization, pharmacodynamic actions and applications were described and discussed.Results:Many types of cellulose-based nano-DDS can ensure efficient encapsulation of various drugs and then overcome the free drug molecule shortcomings. Among all the method described, cellulosebased amphiphilic nanoparticles are most frequently used. These formulations have the higher drug loading capability, a simple and flexible way to achieve multi-functional. Apart from hydrophilic or hydrophobic modification, cellulose or its derivatives can form nanoparticles with different small molecules and macromolecules, leading to a large spectrum of cellulose-based nano-DDS and providing some unexpected advantages.Conclusion:Thorough physicochemical characterization and profound understanding of interactions of the cellulose-based nano-DDS with cells and tissues is indispensable. Moreover, studies toward technics parameter optimization and scale up from the laboratory to production level should be undertaken. The development of intravenous and orally applicable cellulose-based nano-DDS will be an important research area, and these systems will have more commercial status in the market.


2020 ◽  
Vol 21 (6) ◽  
pp. 528-540 ◽  
Author(s):  
Sunil Kumar Dubey ◽  
Shubham Salunkhe ◽  
Mukta Agrawal ◽  
Maithili Kali ◽  
Gautam Singhvi ◽  
...  

Dendrimers are emerging class of nanoparticles used in targeted drug delivery systems. These are radially symmetric molecules with well-defined, homogeneous, and monodisperse structures. Due to the nano size, they can easily cross the biological membrane and increase bioavailability. The surface functionalization facilitates targeting of the particular site of action, assists the high drug loading and improves the therapeutic efficiency of the drug. These properties make dendrimers advantageous over conventional drug delivery systems. This article explains the features of dendrimers along with their method of synthesis, such as divergent growth method, convergent growth method, double exponential and mixed method, hyper-core and branched method. Dendrimers are effectively used in anticancer delivery and can be targeted at the site of tumor either by active or passive targeting. There are three mechanisms by which drugs interact with dendrimers, and they are physical encapsulation, electrostatic interaction, chemical conjugation of drug molecules. Drug releases from dendrimer either by in vivo cleavage of the covalent bond between drugdendrimer complexes or by physical changes or stimulus like pH, temperature, etc.


Author(s):  
Shah Esha Bhavin ◽  
Gajjar Anuradha

Background: Nanotechnology is the need of the hour! The design of nanotechnology aided carriers as a tool for the delivery of low solubility molecules offers a potential platform to overcome the issues of current clinical treatment and achieve good targeted release and bioaccessibility. Objective: Nanosponges (NS) are encapsulating type of nanocarriers capable of carrying both lipophilic and hydrophilic substances. They are synthesized by mixing a solution of polyester which is biodegradable with cross linkers. These tiny porous structures are round shaped having multiple cavities wherein drugs can be housed to offer programmable release. Method: The detailed literature review and patent search summarize the ongoing research on NS. Substances such as poorly soluble drugs, nutraceuticals, gases, proteins and peptides, volatile oils, genetic material, etc. can be loaded on these novel carriers, which are characterized using various analytical techniques. Target-specific drug delivery and controlled drug release are the advantages offered by NS along with a myriad of other promising applications. Results: This review stresses on the development of cyclodextrin based NS, the synthetic methods and characterization of NS along with factors affecting NS formation, their applications and information on the patented work in this area. NS are solid in character and can be formulated in various dosage forms such as parenteral, topical, oral or inhalation. Conclusion: Therefore, owing to their promising benefits over other nanocarriers in terms of drug loading, adaptability, sustainability, solubility and tailored release profile, NS are immediate technological revolution for drug entrapment and as novel drug carriers. The authors expect that these fundamental applications of NS could help the researchers to develop and gain insight about NS in novel drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document