hepatic development
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Chatpong Pethrak ◽  
Navaporn Posayapisit ◽  
Jutharat Pengon ◽  
Nattida Suwanakitti ◽  
Atiporn Saeung ◽  
...  

Antifolates targeting dihydrofolate reductase (DHFR) are antimalarial compounds that have long been used for malaria treatment and chemoprevention (inhibition of infection from mosquitoes to humans). Despite their extensive applications, the thorough understanding of antifolate activity against hepatic malaria parasites, especially resistant parasites, have yet to be achieved. Using a transgenic P. berghei harboring quadruple mutant dhfr from P. falciparum (Pb::Pfdhfr -4M ) , we demonstrate that quadruple mutations on Pfdhfr confer complete chemoprevention resistance to pyrimethamine, the previous generation of antifolate, but not to a new class of antifolate designed to overcome the resistance such as P218. Detailed investigation to pin-point stage-specific chemoprevention further demonstrated that it is unnecessary for the drug to be present throughout hepatic development. The drug is most potent against the developmental stages from early hepatic trophozoite to late hepatic trophozoite, but is not effective at inhibiting sporozoite and early hepatic stage development from sporozoite to early trophozoite. Our data shows that P218 also inhibited the late hepatic stage development, from trophozoite to mature schizonts to a lesser extent. With a single dose of 15 mg/kg, P218 prevented infection from up to 25,000 pyrimethamine-resistant sporozoites, a number equal to thousands of infectious mosquito bites. Additionally, the hepatic stage of malaria parasite is much more susceptible to antifolates than the asexual blood stage. This study provides important insights into the activity of antifolates, as a chemopreventive therapeutic which could lead to a more efficient and cost effective treatment regime.


2021 ◽  
Author(s):  
Chatpong Pethrak ◽  
Navaporn Posayapisit ◽  
Jutharat Pengon ◽  
Nattida Suwanakitti ◽  
Atiporn Saeung ◽  
...  

Antifolates targeting dihydrofolate reductase (DHFR) are antimalarial compounds that have long been used for malaria treatment and chemoprevention (inhibition of infection from mosquitoes to humans). Despite their extensive applications, the thorough understanding of antifolate activity against hepatic malaria parasites, especially resistant parasites, have yet to be achieved. Using a transgenic P. berghei harboring quadruple mutant dhfr from P. falciparum (Pb::Pfdhfr-4M), we demonstrate that quadruple mutations on Pfdhfr confer complete chemoprevention resistance to pyrimethamine, the previous generation of antifolate, but not a new class of antifolate designed to overcome the resistance such as P218. Detailed investigation to pin-point stage-specific chemoprevention further demonstrated that it is unnecessary for the drug to be present throughout hepatic development. The drug is most potent against the developmental stages from  early hepatic trophozoite to late hepatic trophozoite, but is not effective at inhibiting sporozoite and early hepatic stage development from sporozoite to early trophozoite. Our data shows that P218 also inhibited the late hepatic stage development, from trophozoite to mature schizonts to a lesser extent. With a single dose of 15 mg/kg, P218 prevented infection from up to 25,000 pyrimentamine-resistant sporozoites, a number equal to thousands of infectious mosquito bites. Additionally, the hepatic stage of malaria parasite is much more susceptible to antifolates than the asexual blood stage. This study provides important insights into the activity of antifolates, as a chemopreventive therapeutic which could lead to a more efficient and cost effective treatment regime.


2021 ◽  
Vol 5 (2) ◽  
pp. 026104
Author(s):  
Mathieu Danoy ◽  
Yannick Tauran ◽  
Stephane Poulain ◽  
Rachid Jellali ◽  
Johanna Bruce ◽  
...  
Keyword(s):  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Heidi A. Van Every ◽  
Carl J. Schmidt

Abstract Background Artificial selection of modern meat-producing chickens (broilers) for production characteristics has led to dramatic changes in phenotype, yet the impact of this selection on metabolic and molecular mechanisms is poorly understood. The first 3 weeks post-hatch represent a critical period of adjustment, during which the yolk lipid is depleted and the bird transitions to reliance on a carbohydrate-rich diet. As the liver is the major organ involved in macronutrient metabolism and nutrient allocatytion, a combined transcriptomics and metabolomics approach has been used to evaluate hepatic metabolic reprogramming between Day 4 (D4) and Day 20 (D20) post-hatch. Results Many transcripts and metabolites involved in metabolic pathways differed in their abundance between D4 and D20, representing different stages of metabolism that are enhanced or diminished. For example, at D20 the first stage of glycolysis that utilizes ATP to store or release glucose is enhanced, while at D4, the ATP-generating phase is enhanced to provide energy for rapid cellular proliferation at this time point. This work has also identified several metabolites, including citrate, phosphoenolpyruvate, and glycerol, that appear to play pivotal roles in this reprogramming. Conclusions At Day 4, metabolic flexibility allows for efficiency to meet the demands of rapid liver growth under oxygen-limiting conditions. At Day 20, the liver’s metabolism has shifted to process a carbohydrate-rich diet that supports the rapid overall growth of the modern broiler. Characterizing these metabolic changes associated with normal post-hatch hepatic development has generated testable hypotheses about the involvement of specific genes and metabolites, clarified the importance of hypoxia to rapid organ growth, and contributed to our understanding of the molecular changes affected by decades of artificial selection.


2021 ◽  
Author(s):  
Patrycja A. Jazwiec ◽  
Violet S. Patterson ◽  
Tatiane A. Ribeiro ◽  
Erica Yeo ◽  
Katherine M. Kennedy ◽  
...  

ABSTRACTPaternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether paternal obesity-induced offspring metabolic dysfunction is associated with placental endoplasmic reticulum (ER) stress and impaired vascular development. We determined whether offspring glucose intolerance is fueled by ER stress-mediated changes in fetal hepatic development. Furthermore, we also determined whether paternal obesity may indirectly affect in utero development by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow diet (CON; 17% kcal fat) or high fat diet (PHF; 60% kcal fat) for 8-10 weeks were time-mated with control female mice to generate pregnancies and offspring. Glucose tolerance in pregnant females was evaluated at mid-gestation (embryonic day (E) 14.5) and term gestation (E18.5). At E14.5 and E18.5, fetal liver and placentae were collected, and markers of hypoxia, angiogenesis, endocrine function, and macronutrient transport, and unfolded protein response (UPR) regulators were evaluated to assess ER stress. Young adult offspring glucose tolerance and metabolic parameters were assessed at ∼60 days of age. Paternal obesity did not alter maternal glucose tolerance or placental lactogen in pregnancy but did induce placental hypoxia, ER stress, and altered placental angiogenesis. This effect was most pronounced in placentae associated with female fetuses. Consistent with this, paternal obesity also activated the ATF6 and PERK branches of the UPR in fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Adult offspring of obese fathers showed glucose intolerance and impaired whole-body energy metabolism, particularly in female offspring. Thus, paternal obesity programs sex-specific adverse placental structural and functional adaptations and alters fetal hepatic development via ER stress-induced pathways. These changes likely underpin metabolic deficits in adult offspring.Summary SentencePaternal obesity alters placental vascular structures and is associated with sex-specific compromises in glucose tolerance and metabolism in young offspring


2019 ◽  
Author(s):  
Takamichi Ishii ◽  
Satoru Seo ◽  
Takashi Ito ◽  
Satoshi Ogiso ◽  
Ken Fukumitsu ◽  
...  

Abstract Background : The bare area, which lies between the right liver and diaphragm, should be dissected to mobilize the right liver. The bare area was reportedly formed by direct adhesion between the liver and diaphragm, meaning that the bare area lacked serosal components. This study aimed to analyze the structure of the bare area by an integrated study of surgical and laparoscopic images and pathological studies and describe surgical procedures focusing on the multilayered structure. Methods : Surgical specimens of hepatectomy were analyzed histologically to evaluate the macroscopic structure of the bare area. Laparoscopic images and cadaver anatomy of the bare area were also examined, changing the dissection layers of the bare area. Results : The bare area comprised a multilayered structure that resulted in fusions in the hepatic development among the parietal peritoneum (peritoneum of the diaphragm part) and the visceral peritoneum (liver serosa). The multilayered structure of the bare area comprised the liver, sub-serosal connective tissue, liver serosa, parietal peritoneum, retroperitoneal connective tissue, epimysium of the diaphragm, and diaphragm, in order from the liver to the diaphragm. Laparoscopic images sometimes enabled us to recognize the multilayered structure of the bare area. Conclusions : Histopathological findings showed the bare area to be a multilayered structure. In cases where tumors are located underneath the bare area, it could be important to dissect the bare area, with careful attention to its multilayered structure. Surgical dissection of the bare area in the outer layer of the fused peritoneum could allow a sufficient safety margin.


2019 ◽  
Vol 3 (1) ◽  
pp. 15-22
Author(s):  
Fatemeh Mohammadzadeh ◽  
Vahid Hosseini ◽  
Alireza Alihemmati ◽  
Maghsod Shaaker ◽  
Gholamali Mosayyebi ◽  
...  

Stearoyl-coenzyme A desaturase 1 (SCD1) is a microsomal enzyme that controls fatty acid metabolism and is highly expressed in hepatocytes. SCD1 may play a key role in liver development and hepatic lipid homeostasis through promoting monounsaturated protein acylation and converting lipotoxic saturated fatty acids into monounsaturated fatty acids. Imbalanced activity of SCD1 has been implicated in fatty liver induction, inflammation and stress. In this review, the role of SCD1 in hepatic development, function and pathogenesis is discussed. Additionally, emerging novel therapeutic agents targeting SCD1 for the treatment of liver disorders are presented.


2017 ◽  
Vol 1 (1) ◽  
pp. 11-15
Author(s):  
Shetty PN ◽  
◽  
Ray B ◽  
D’Souza AS ◽  
Sushma RK ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document