scholarly journals Paternal obesity results in placental hypoxia and sex-specific impairments in placental vascularization and offspring metabolic function

2021 ◽  
Author(s):  
Patrycja A. Jazwiec ◽  
Violet S. Patterson ◽  
Tatiane A. Ribeiro ◽  
Erica Yeo ◽  
Katherine M. Kennedy ◽  
...  

ABSTRACTPaternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether paternal obesity-induced offspring metabolic dysfunction is associated with placental endoplasmic reticulum (ER) stress and impaired vascular development. We determined whether offspring glucose intolerance is fueled by ER stress-mediated changes in fetal hepatic development. Furthermore, we also determined whether paternal obesity may indirectly affect in utero development by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow diet (CON; 17% kcal fat) or high fat diet (PHF; 60% kcal fat) for 8-10 weeks were time-mated with control female mice to generate pregnancies and offspring. Glucose tolerance in pregnant females was evaluated at mid-gestation (embryonic day (E) 14.5) and term gestation (E18.5). At E14.5 and E18.5, fetal liver and placentae were collected, and markers of hypoxia, angiogenesis, endocrine function, and macronutrient transport, and unfolded protein response (UPR) regulators were evaluated to assess ER stress. Young adult offspring glucose tolerance and metabolic parameters were assessed at ∼60 days of age. Paternal obesity did not alter maternal glucose tolerance or placental lactogen in pregnancy but did induce placental hypoxia, ER stress, and altered placental angiogenesis. This effect was most pronounced in placentae associated with female fetuses. Consistent with this, paternal obesity also activated the ATF6 and PERK branches of the UPR in fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Adult offspring of obese fathers showed glucose intolerance and impaired whole-body energy metabolism, particularly in female offspring. Thus, paternal obesity programs sex-specific adverse placental structural and functional adaptations and alters fetal hepatic development via ER stress-induced pathways. These changes likely underpin metabolic deficits in adult offspring.Summary SentencePaternal obesity alters placental vascular structures and is associated with sex-specific compromises in glucose tolerance and metabolism in young offspring

Diabetologia ◽  
2021 ◽  
Author(s):  
Juliana de Almeida-Faria ◽  
Daniella E. Duque-Guimarães ◽  
Thomas P. Ong ◽  
Lucas C. Pantaleão ◽  
Asha A. Carpenter ◽  
...  

Abstract Aims/hypothesis Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. Methods miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic–hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. Results The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. Conclusions/interpretation Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target. Graphical abstract


2012 ◽  
Vol 26 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Kristin A. Anderson ◽  
Fumin Lin ◽  
Thomas J. Ribar ◽  
Robert D. Stevens ◽  
Michael J. Muehlbauer ◽  
...  

Abstract Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/CaM-dependent protein kinase family that is expressed abundantly in brain. Previous work has revealed that CaMKK2 knockout (CaMKK2 KO) mice eat less due to a central nervous system -signaling defect and are protected from diet-induced obesity, glucose intolerance, and insulin resistance. However, here we show that pair feeding of wild-type mice to match food consumption of CAMKK2 mice slows weight gain but fails to protect from diet-induced glucose intolerance, suggesting that other alterations in CaMKK2 KO mice are responsible for their improved glucose metabolism. CaMKK2 is shown to be expressed in liver and acute, specific reduction of the kinase in the liver of high-fat diet-fed CaMKK2floxed mice results in lowered blood glucose and improved glucose tolerance. Primary hepatocytes isolated from CaMKK2 KO mice produce less glucose and have decreased mRNA encoding peroxisome proliferator-activated receptor γ coactivator 1-α and the gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, and these mRNA fail to respond specifically to the stimulatory effect of catecholamine in a cell-autonomous manner. The mechanism responsible for suppressed gene induction in CaMKK2 KO hepatocytes may involve diminished phosphorylation of histone deacetylase 5, an event necessary in some contexts for derepression of the peroxisome proliferator-activated receptor γ coactivator 1-α promoter. Hepatocytes from CaMKK2 KO mice also show increased rates of de novo lipogenesis and fat oxidation. The changes in fat metabolism observed correlate with steatotic liver and altered acyl carnitine metabolomic profiles in CaMKK2 KO mice. Collectively, these results are consistent with suppressed catecholamine-induced induction of gluconeogenic gene expression in CaMKK2 KO mice that leads to improved whole-body glucose homeostasis despite the presence of increased hepatic fat content.


Author(s):  
Cody D. Smith ◽  
Chein-Te Lin ◽  
Shawna L. McMillin ◽  
Luke A. Weyrauch ◽  
Cameron Alan Schmidt ◽  
...  

Elevated mitochondrial H2O2 emission and an oxidative shift in cytosolic redox environment have been linked to high fat diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle β-oxidation flux were studied. In mice overexpressing peroxisome proliferator activated receptor-α in muscle (MCK-PPARα), lipid supported mitochondrial respiration, membrane potential (ΔΨm) and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole-body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1 deficient, fatty-liver dystrophic mice, another model characterized by increased β-oxidation flux and glucose intolerance. Crossing MCAT (mitochondrial-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment and glucose tolerance, but surprisingly both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high fat diet MCK-PPARα mice were characterized by much lower whole body, fat and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in attempt to restore bioenergetic homeostasis.


2012 ◽  
Vol 302 (8) ◽  
pp. R950-R957 ◽  
Author(s):  
Katia De Angelis ◽  
Danielle D. Senador ◽  
Cristiano Mostarda ◽  
Maria C. Irigoyen ◽  
Mariana Morris

Consumption of high levels of fructose in humans and animals leads to metabolic and cardiovascular dysfunction. There are questions as to the role of the autonomic changes in the time course of fructose-induced dysfunction. C57/BL male mice were given tap water or fructose water (100 g/l) to drink for up to 2 mo. Groups were control (C), 15-day fructose (F15), and 60-day fructose (F60). Light-dark patterns of arterial pressure (AP) and heart rate (HR), and their respective variabilities were measured. Plasma glucose, lipids, insulin, leptin, resistin, adiponectin, and glucose tolerance were quantified. Fructose increased systolic AP (SAP) at 15 and 60 days during both light (F15: 123 ± 2 and F60: 118 ± 2 mmHg) and dark periods (F15: 136 ± 4 and F60: 136 ± 5 mmHg) compared with controls (light: 111 ± 2 and dark: 117 ± 2 mmHg). SAP variance (VAR) and the low-frequency component (LF) were increased in F15 (>60% and >80%) and F60 (>170% and >140%) compared with C. Cardiac sympatho-vagal balance was enhanced, while baroreflex function was attenuated in fructose groups. Metabolic parameters were unchanged in F15. However, F60 showed significant increases in plasma glucose (26%), cholesterol (44%), triglycerides (22%), insulin (95%), and leptin (63%), as well as glucose intolerance. LF of SAP was positively correlated with SAP. Plasma leptin was correlated with triglycerides, insulin, and glucose tolerance. Results show that increased sympathetic modulation of vessels and heart preceded metabolic dysfunction in fructose-consuming mice. Data suggest that changes in autonomic modulation may be an initiating mechanism underlying the cluster of symptoms associated with cardiometabolic disease.


2019 ◽  
Vol 7 (1) ◽  
pp. e000650 ◽  
Author(s):  
Tal Almog ◽  
Michal Kandel Kfir ◽  
Hana Levkovich ◽  
Gadi Shlomai ◽  
Iris Barshack ◽  
...  

ObjectiveWhile extensive research revealed that interleukin (IL)-1β contributes to insulin resistance (IR) development, the role of IL-1α in obesity and IR was scarcely studied. Using control, whole body IL-1α knockout (KO) or myeloid-cell-specific IL-1α-deficient mice, we tested the hypothesis that IL-1α deficiency would protect against high-fat diet (HFD)-induced obesity and its metabolic consequences.Research design and methodsTo induce obesity and IR, control and IL-1α KO mice were given either chow or HFD for 16 weeks. Glucose tolerance test was performed at 10 and 15 weeks, representing early and progressive stages of glucose intolerance, respectively. Liver and epididymal white adipose tissue (eWAT) samples were analyzed for general morphology and adipocyte size. Plasma levels of adiponectin, insulin, total cholesterol and triglyceride (TG), lipoprotein profile as well as hepatic lipids were analyzed. Expression of lipid and inflammation-related genes in liver and eWAT was analyzed. Primary mouse hepatocytes isolated from control mice were treated either with dimethyl sulfoxide (DMSO) (control) or 20 ng/mL recombinant IL-1α for 24 hours and subjected to gene expression analysis.ResultsAlthough total body weight gain was similar, IL-1α KO mice showed reduced adiposity and were completely protected from HFD-induced glucose intolerance. In addition, plasma total cholesterol and TG levels were lower and HFD-induced accumulation of liver TGs was completely inhibited in IL-1α KO compared with control mice. Expression of stearoyl-CoA desaturase1 (SCD1), fatty acid synthase (FASN), elongation of long-chain fatty acids family member 6 (ELOVL6), acetyl-CoA carboxylase (ACC), key enzymes that promote de-novo lipogenesis, was lower in livers of IL-1α KO mice. Treatment with recombinant IL-1α elevated the expression of ELOVL6 and FASN in mouse primary hepatocytes. Finally, mice with myeloid-cell-specific deletion of IL-1α did not show reduced adiposity and improved glucose tolerance.ConclusionsWe demonstrate a novel role of IL-1α in promoting adiposity, obesity-induced glucose intolerance and liver TG accumulation and suggest that IL-1α blockade could be used for treatment of obesity and its metabolic consequences.


Author(s):  
Lu Gan ◽  
Demin Liu ◽  
Dina Xie ◽  
Wayne Bond Lau ◽  
Jing Liu ◽  
...  

Background: Acute myocardial infarction (AMI) patients suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of AMI upon adipocyte function is unclear. Small extracellular vesicles (sEV) critically contribute to organ-organ communication. Whether and how sEV mediate post-MI cardiomyocyte/adipocyte communication remain unknown. Methods Plasma sEV were isolated from sham control (Pla-sEV Sham ) or 3 hours after myocardial ischemia/reperfusion (Pla-sEV MI/R ) and incubated with adipocytes for 24 hours. Compared to Pla-sEV Sham , Pla-sEV MI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, adiponectin (APN). Pla-sEV MI/R activated two (PERK-CHOP and ATF6-EDEM pathways) of the three endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo MI/R (Myo-sEV MI/R ). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEV MI/R , Myo-sEV MI/R , and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEV MI/R , a miR-27a mimic activated PERK-CHOP and ATF6-EDEM mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEV MI/R -induced ER stress and restored APN production. Results: An unbiased approach identified EDEM3 as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEV MI/R , whereas EDEM3 overexpression attenuated Myo-sEV MI/R -resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. Conclusion: We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched sEV. Targeting sEV-mediated cardiomyocyte-adipocyte pathologic communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1666
Author(s):  
Dean S. Ross ◽  
Tzu-Hsuan Yeh ◽  
Shalinie King ◽  
Julia Mathers ◽  
Mark S. Rybchyn ◽  
...  

Increased risks of skeletal fractures are common in patients with impaired glucose handling and type 2 diabetes mellitus (T2DM). The pathogenesis of skeletal fragility in these patients remains ill-defined as patients present with normal to high bone mineral density. With increasing cases of glucose intolerance and T2DM it is imperative that we develop an accurate rodent model for further investigation. We hypothesized that a high fat diet (60%) administered to developing male C57BL/6J mice that had not reached skeletal maturity would over represent bone microarchitectural implications, and that skeletally mature mice would better represent adult-onset glucose intolerance and the pre-diabetes phenotype. Two groups of developing (8 week) and mature (12 week) male C57BL/6J mice were placed onto either a normal chow (NC) or high fat diet (HFD) for 10 weeks. Oral glucose tolerance tests were performed throughout the study period. Long bones were excised and analysed for ex vivo biomechanical testing, micro-computed tomography, 2D histomorphometry and gene/protein expression analyses. The HFD increased fasting blood glucose and significantly reduced glucose tolerance in both age groups by week 7 of the diets. The HFD reduced biomechanical strength, both cortical and trabecular indices in the developing mice, but only affected cortical outcomes in the mature mice. Similar results were reflected in the 2D histomorphometry. Tibial gene expression revealed decreased bone formation in the HFD mice of both age groups, i.e., decreased osteocalcin expression and increased sclerostin RNA expression. In the mature mice only, while the HFD led to a non-significant reduction in runt-related transcription factor 2 (Runx2) RNA expression, this decrease became significant at the protein level in the femora. Our mature HFD mouse model more accurately represents late-onset impaired glucose tolerance/pre-T2DM cases in humans and can be used to uncover potential insights into reduced bone formation as a mechanism of skeletal fragility in these patients.


2009 ◽  
Vol 30 (7) ◽  
pp. 928-928
Author(s):  
Guenther Boden ◽  
Matthew Silviera ◽  
Brian Smith ◽  
Peter Cheung ◽  
Carol Homko

Abstract Background It is not known whether acute tissue injury is associated with endoplasmic reticulum (ER) stress. Objective Our objective was to determine whether open, sc fat biopsies cause ER stress. Approach Five healthy subjects underwent three open sc fat biopsies. The first biopsy, taken from the lateral aspect of a thigh, was followed 4 h later by a second biopsy from the same incision site and a third biopsy from the contralateral leg. Expression markers of ER stress, inflammation, hypoxia, and adipokines were measured in these fat biopsies. In addition, we tested for signs of systemic ER stress and inflammation in plasma and in circulating monocytes. Results mRNA/18s ratios of IL-6, monocyte chemoattractant protein-1, CD-14, hypoxia-induced factor 1-α, the spliced form of Xbox protein-1, glucose-regulated protein 78, CEBP homologous protein, and activating factor-4 were all severalfold higher, whereas mRNA/18s ratios of adiponectin and leptin were lower in fat biopsies taken from the same site 4 h after the first biopsy but were unchanged in the second biopsy that was taken from the contralateral site. The biopsies were not associated with changes in plasma and monocyte IL-6 concentrations or in monocyte ER stress markers. Also, whole-body insulin-stimulated glucose uptake was the same in 15 subjects who had biopsies compared with 15 different subjects who did not. Conclusion Open, sc fat biopsies produced inflammation, hypoxia, ER stress, and decreased expression of adiponectin and leptin. These changes remained confined to the biopsy site for at least 4 h.


2004 ◽  
Vol 96 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Li Chen ◽  
B. L. Grégoire Nyomba

This study examined the effects of maternal ethanol (EtOH) consumption during pregnancy or lactation on glucose homeostasis in the adult rat offspring. Glucose disposal was determined by minimal model during an intravenous glucose tolerance test in rats that had a small or normal birth weight after EtOH exposure in utero and in rats whose mothers were given EtOH during lactation only. All three EtOH groups had decreased glucose tolerance index and insulin sensitivity index, but their glucose effectiveness was not different from that of controls. In addition, EtOH rat offspring that were small at birth had elevated plasma, liver, and muscle triglyceride levels. The data show that EtOH exposure during pregnancy programs the body to insulin resistance later in life, regardless of birth weight, but that this effect also results in dyslipidemia in growth-restricted rats. In addition, insulin resistance is also evident after EtOH exposure during lactation.


2015 ◽  
Vol 228 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Amanda E Brandon ◽  
Ella Stuart ◽  
Simon J Leslie ◽  
Kyle L Hoehn ◽  
David E James ◽  
...  

An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12–16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42–54 weeks of age, male WT and Acc2−/− mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2−/− mice, aged Acc2−/− mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2−/− mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic–euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2−/− mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.


Sign in / Sign up

Export Citation Format

Share Document