scholarly journals A New Moving Kirchhoff-Love Plate Element for Dynamic Analysis of Vehicle-Pavement Interaction

2022 ◽  
pp. 1-33
Author(s):  
Yan Xu ◽  
Yang Caijin ◽  
Weihua Zhang ◽  
Weidong Zhu ◽  
Wei Fan

Abstract A new moving Kirchhoff-Love plate element is developed in this work to accurately and efficiently calculate the dynamic response of vehicle-pavement interaction. Since the vehicle can only affect a small region nearby, the wide pavement is reduced to a small reduced plate area around the vehicle. The vehicle loads moving along an arbitrary trajectory is considered, and the arbitrary Lagrangian-Eulerian method is used here for coordinate conversion. The reduced plate area is spatially discretized using the current moving plate element, where its governing equations are derived using Lagrange's equations. The moving plate element is validated by different plate subjected to moving load cases, where the influences of different factors on reduced plate area length of the RBM model are also investigated. Then a vehicle-pavement interaction case with constant and variable speed is analyzed here. The calculation results from the moving plate element are in good agreement with those from the modal superposition method (MSM), and the calculation time with the moving plate element is only one third of that using the MSM. It is also found that the moving load velocity and ground damping have great influences on reduced plate area length of the RBM. The moving plate element is accurate and more efficient than the MSM in calculating the dynamic response of the vehicle-pavement interaction.

2018 ◽  
Vol 106 (2) ◽  
pp. 206
Author(s):  
Abdennacer Chemami ◽  
Youcef Khadri ◽  
Sabiha Tekili ◽  
El Mostafa Daya ◽  
Ali Daouadji ◽  
...  

This paper presents a numerical study of the free and damped forced vibration of simply-supported beams with composite coats subjected to a moving load by use of finite elements method. Three types of beam configurations, aluminum, composite and strengthened beam are investigated. The equation of motion of the beam is solved using the modal superposition method and integrated by applying the Newmark time integration procedure. Good agreements were achieved between the FEM and analytical solutions. The damped dynamic response, critical velocities and the dynamic amplification factor of the beam are calculated for different parameters such as the thickness ratio, the fiber orientation of the coat and damping ratio.


2013 ◽  
Vol 361-363 ◽  
pp. 1329-1334
Author(s):  
Jing Feng Zhang ◽  
Xiao Zhen Li ◽  
Li Zhong Song ◽  
Chun Sheng Shan

In this thesis, a dynamic analysis model is established that subjected to a series of moving harmonic loads, and the analytical solution of the dynamic response is deduced based on the mode superposition method. Based on this analytical solution, a program is made to calculate the vertical dynamic response of simply-supported beam. The calculation results show that the analytical solution is reasonable and correct. When the harmonic frequency is near to the fundamental frequency of the simply-supported beam, the resonance phenomenon will occur. The dynamic response of the beam will decrease as the speed increases, and the presence of damp can suppress the vibration of the bridge.


2012 ◽  
Vol 482-484 ◽  
pp. 1402-1405 ◽  
Author(s):  
Zhi Hui Huang ◽  
Qing Guang Chen ◽  
Yi Gang Li ◽  
Liang Lin Shi

In order to study the relation between the velocity of moving load and the rail deformation, a mechanical model about rail elastic support was built for a existing wheel/rail system monitoring equipment's physical model. Combining the boundary conditions and load type, the oscillation equation of rail mechanical model was solved via Vibration superposition method. Analysis the dynamic response of rail under different moving load range from 40km/h to 200km/h by MATLAB.The law of the relation between rail deformation and the velocity of moving load was got. That is the deformation of rail decrease when the velocity of the moving load increase.


2021 ◽  
Author(s):  
Hu Daohang ◽  
Zhao Xin

<p>This paper introduces a new idea in the reconstruction and continuation projects. By arranging damping devices, the additional damping of the structure is increased, thereby reducing the dynamic response of the structure under the new seismic precautionary criterion. This paper focuses on the study of viscous dampers which one of the damping device, introduces the energy dissipation principle of viscous dampers, and combines a two-story plane frame case to analyze and compare the dynamic response between non-damping structure and damping structure. The location and quantity of the arrangement were compared with multiple models. Through analysis, it can be seen that by equipping with viscous dampers, seismic energy can be effectively dissipated, thereby reducing the workload of structural reinforcement and having less impact on the original structure. Finally, two commonly analysis methods in damping structures are studied, direct integration method and fast nonlinear analysis (FNA), the main differences between the two analysis methods are introduced, and the calculation results of the two methods are compared and analyzed.</p>


2009 ◽  
Vol 407-408 ◽  
pp. 420-423
Author(s):  
He Ping Wang ◽  
Xue Ping Zhang

An explicit dynamic coupled thermal-mechanical Arbitrary Lagrangian Eulerian (ALE) model was established to simulate orthogonal cutting AISI 52100 bearing steel, and its temperature and stress distribution. Based on ABAQUS, The ALE approach effectively simulates plastic flow around round edge of the cutting tool without employing chip separation criteria. The calculation results reveal that cutting speed and cutting depth have great impact on chip morphology, stress and temperature distribution in the finished surface and subsurface, the predicted temperature agrees well with experiment data obtained under the similar cutting conditions as well as the change in chip morphology from continuous to sawtooth as the cutting speed increases.


2014 ◽  
Vol 36 (4) ◽  
pp. 245-254
Author(s):  
N. T. Khiem ◽  
P. T. Hang

In present paper, the spectral approach is proposed for analysis of multiple cracked beam subjected to general moving load that allows us to obtain explicitly dynamic response of the beam in frequency domain. The obtained frequency response is straightforward to calculate time history response by using the FFT algorithm and provides a novel tool to investigate effect of position and depth of multiple cracks on the dynamic response. The analysis is important to develop the spectral method for identification of multiple cracked beam by using its response to moving load. The theoretical development is illustrated and validated by numerical case study.


Author(s):  
Milan Moravčík ◽  
Martin Moravčík

Abstract The paper is devoted dynamic effects in the track structure - the quasi-static excitation due to moving load, as the important source for the response of track components in the low frequency area (0 Hz < f < 40 Hz). The low-frequency track (the rail) response is associated with periodicity of wheel sets, bogies, and carriages of passage trains, The periodicity of track loading is determined by so called dominant frequencies f(d) at a position x of the track.


Sign in / Sign up

Export Citation Format

Share Document