The front runner in roll waves produced by local disturbances

2021 ◽  
Vol 932 ◽  
Author(s):  
Boyuan Yu ◽  
Vincent H. Chu

Roll waves produced by a local disturbance comprise a group of shock waves with steep fronts. We used a robust and accurate numerical scheme to capture the steep fronts in a shallow-water hydraulic model of the waves. Our simulations of the waves in clear water revealed the existence of a front runner with an exceedingly large amplitude – much greater than those of all other shock waves in the wave group. The trailing waves at the back remained periodic. Waves were produced continuously within the group due to nonlinear instability. The celerity depended on the wave amplitude. Over time, the instability produced an increasing number of shock waves in an ever-expanding wave group. We conducted simulations for three types of local disturbances of very different duration over a range of amplitudes. We interpreted the simulation results for the front runner and the trailing waves, guided by an analytical solution and the laboratory data available for the smaller waves in the trailing end of the wave group.

2013 ◽  
Vol 61 (4) ◽  
pp. 286-292 ◽  
Author(s):  
Cristiana Di Cristo ◽  
Michele Iervolino ◽  
Andrea Vacca

Abstract The paper addresses the prediction of roll-waves occurrence in mud-flows. The spatial growth of a point-wise disturbance is analytically described, based on the linearized flow model of a Herschel and Bulkley fluid, in the neighborhood of an initial uniform base condition. The theoretical achievements allow to generalize to mud-flows the minimum channel criterion commonly used for the prediction of roll-waves in clear-water. The applicability of the criterion is discussed through the comparison with literature laboratory data concerning unstable flows without rollwaves.


2014 ◽  
Vol 9 (3) ◽  
pp. 331-343 ◽  
Author(s):  
N. Ahmad ◽  
T. Mohamed ◽  
F. H. Ali ◽  
B. Yusuf

Laboratory data for local scour depth regarding the size of wide piers are presented. Clear water scour tests were performed for various pier widths (0.06, 0.076, 0.102, 0.14 and 0.165 m), two types of pier shapes (circular and rectangular) and two types of uniform cohesionless bed sediment (d50 = 0.23 and d50 = 0.80 mm). New data are presented and used to demonstrate the effects of pier width, pier shape and sediment size on scour depth. The influence of equilibrium time (te) on scouring processes is also discussed. Equilibrium scour depths were found to decrease with increasing values of b/d50. The temporal development of equilibrium local scour depth with new laboratory data is demonstrated for flow intensity V/Vc = 0.95. On the other hand, the results of scour mechanism have shown a significant relationship between normalized volume of scoured and deposited with pier width, b. The experimental data obtained in this study and data available from the literature for wide piers are used to evaluate predictions of existing methods.


1976 ◽  
Vol 1 (15) ◽  
pp. 22 ◽  
Author(s):  
J.D.A. Van Hoften ◽  
S. Karaki

An experimental investigation was made to study wave-current interaction. Wave amplitude attenuation was measured along a laboratory wave channel to compare wave dissipation with and without flow. Mean, wave, and turbulent velocities were also measured to determine the modifications of the flow imposed by the gravity waves propogating with the current. The process of energy transfer in the wave current system was studied. Energy was found to be extracted from the waves, diffused downward and dissipated by an increase in bottom shear stress.


1973 ◽  
Vol 28 (1) ◽  
pp. 105-109 ◽  
Author(s):  
H. Jäger ◽  
R. Schöfer

For shock waves produced by special wire explosions the short time energy input condition of the theories of Lin, Sakurai and Vlases-Jones is fairly good fulfilled. In these cases the shock wave energies can be easily determined from the expansion velocity of the waves. Variation of the parameters of the discharge circuit show, how these parameters should be chosen in order to get a maximum transfer of energy either to the shock waves or to the wire material.


In this paper and in part II, we give the theory of a distinctive type of wave motion, which arises in any one-dimensional flow problem when there is an approximate functional relation at each point between the flow q (quantity passing a given point in unit time) and concentration k (quantity per unit distance). The wave property then follows directly from the equation of continuity satisfied by q and k . In view of this, these waves are described as ‘kinematic’, as distinct from the classical wave motions, which depend also on Newton’s second law of motion and are therefore called ‘dynamic’. Kinematic waves travel with the velocity dq/dk , and the flow q remains constant on each kinematic wave. Since the velocity of propagation of each wave depends upon the value of q carried by it, successive waves may coalesce to form ‘kinematic shock waves ’. From the point of view of kinematic wave theory, there is a discontinuous increase in q at a shock, but in reality a shock wave is a relatively narrow region in which (owing to the rapid increase of q ) terms neglected by the flow concentration relation become important. The general properties of kinematic waves and shock waves are discussed in detail in §1. One example included in §1 is the interpretation of the group-velocity phenomenon in a dispersive medium as a particular case of the kinematic wave phenomenon. The remainder of part I is devoted to a detailed treatment of flood movement in long rivers, a problem in which kinematic waves play the leading role although dynamic waves (in this case, the long gravity waves) also appear. First (§2), we consider the variety of factors which can influence the approximate flow-concentration relation, and survey the various formulae which have been used in attempts to describe it. Then follows a more mathematical section (§3) in which the role of the dynamic waves is clarified. From the full equations of motion for an idealized problem it is shown that at the ‘Froude numbers’ appropriate to flood waves, the dynamic waves are rapidly attenuated and the main disturbance is carried downstream by the kinematic waves; some account is then given of the behaviour of the flow at higher Froude numbers. Also in §3, the full equations of motion are used to investigate the structure of the kinematic shock; for this problem, the shock is the ‘monoclinal flood wave’ which is well known in the literature of this subject. The final sections (§§4 and 5) contain the application of the theory of kinematic waves to the determination of flood movement. In §4 it is shown how the waves (including shock waves) travelling downstream from an observation point may be deduced from a knowledge of the variation with time of the flow at the observation point; this section then concludes with a brief account of the effect on the waves of tributaries and run-off. In §5, the modifications (similar to diffusion effects) which arise due to the slight dependence of the flow-concentration curve on the rate of change of flow or concentration, are described and methods for their inclusion in the theory are given.


1887 ◽  
Vol 42 (251-257) ◽  
pp. 80-83 ◽  

For brevity and simplicity consider only the case of two-dimensional motion . All that it is necessary to know of the medium is the relation between the wave-velocity and the wave-length of an endless procession of periodic waves. The result of our work will show us that the velocity of progress of a zero, or maximum, or minimum, in any part of a varying group of waves, is equal to the velocity of progress of periodic waves of wave-length equal to a certain length, which may be defined as the wave-length in the neighbourhood of the particular point looked to in the group (a length which will generally be intermediate between the distances from the point considered to its next-neighbour corresponding points on its two sides).


Author(s):  
Pengyao Yu ◽  
Guoqing Feng ◽  
Huilong Ren ◽  
Xiaodong Zhao

When the ship navigates in the sea, the dynamic deformation of the ship hull will be induced by the waves. The relative large deformation of the ship hull induced by the waves may affect the operation of some certain equipment. In order to keep the equipment operating normally, the influence of the ship deformation should be evaluated. The method for the calculation and analysis of the ship deformation is discussed here. The wave loads of the ship in unit regular wave amplitude are calculated based on 3-D linear potential flow theory. The sea pressure and inertial force of the ship are obtained and applied to the global finite element model of the ship. Under the quasi-static assumption, the structural deformation response in unit regular wave amplitude is calculated with the use of finite element analysis. Then, the amplitude frequency response of the relative deformation between two arbitrary positions in the hull is achieved. The history of the deformation can be obtained based on the simulation of deformation response in irregular waves or the modal superposition method. With the help of spectral analysis method, the spectrum of the relative deformation between two arbitrary positions in the hull may be obtained. The statistical analysis of ship hull deformation in the short-term sea state is realized. Considering the critical value of ship deformation, the reliability analysis method is adopted to assess the ability of hull to resist the deformation.


2019 ◽  
Vol 33 (10) ◽  
pp. 1950085
Author(s):  
Xian-Qing Yang ◽  
Yao Yang ◽  
Yang Jiao ◽  
Wei Zhang

In this paper, both the fifth-order Runge–Kutta numerical scheme and binary collision approximation are used to study the phase shift. Both numerical and theoretical results are shown that the solitary wave after head-on collision propagates along the chain behind the reference wave in both even and odd numbers of grain chains. It is the well-known feature of the appearance of the phase shift. Those results are in agreement with the experimental results. Furthermore, it is found that the phase shift is not only related to the collision position of the waves, but also to the position where the time is measured. The value of phase shift increases nonmonotonously with increasing the velocity of the opposite propagation of the wave. Binary collision approximation is applied to analyze the phase shift, and it is found that theoretical results agree well with numerical results, especially in the case of phase shift in odd chain.


2012 ◽  
Vol 446-449 ◽  
pp. 2206-2209
Author(s):  
Jin Long Wang

Three-dimensional finite element model of the mine escape capsule is established. With the different values of explosion shock waves, simulation analysis of the entry locker is performed by using ABAQUS. The simulation results indicate that the mine escape capsule is safe and available if the surge pressure of shock waves is less than 3.5Mpa.


2002 ◽  
Vol 24 (3) ◽  
pp. 167-180
Author(s):  
Duong Ngoc Hai ◽  
Nguyen Van Tuan

The liquid and gas mixtures are met in many natural and industrial processes. In the paper the results of investigation of waves reflected by solid wall of the stationary shock waves with moderate intensities or the transient pulses propagated in the mixture of liquid with vapour bubbles are presented. The effect of initial conditions, shock strength, size of the bubbles and volume fraction of vapour phase on the behaviour of the waves reflected by solid wall is studied.


Sign in / Sign up

Export Citation Format

Share Document