scholarly journals FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diego A. Ramirez-Diaz ◽  
Adrián Merino-Salomón ◽  
Fabian Meyer ◽  
Michael Heymann ◽  
Germán Rivas ◽  
...  

AbstractFtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.

2019 ◽  
Author(s):  
Diego A. Ramirez-Diaz ◽  
Adrian Merino-Salomon ◽  
Fabian Meyer ◽  
Michael Heymann ◽  
German Rivas ◽  
...  

AbstractFtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far however not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we designed an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ actively transformed these tubes into spring-like structures, where GTPase activity promoted spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, we found that FtsZ rings indeed exerts 0.14 – 1.09 pN forces upon GTP hydrolysis, through torsional stress induced by bidirectional treadmilling. These directional forces could further be demonstrated to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls.


2020 ◽  
Author(s):  
Diego Ramirez-Diaz ◽  
Adrian Merino-Salomon ◽  
Fabian Meyer ◽  
Michael Heymann ◽  
German Rivas ◽  
...  

Abstract FtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far however not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we designed an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ actively transformed these tubes into spring-like structures, where GTPase activity promoted spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are further shown to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces are generated by bidirectional treadmilling through torsional stress.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A198-A198
Author(s):  
Tingting Zhong ◽  
Xinghua Pang ◽  
Zhaoliang Huang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundTIGIT is an inhibitory receptor mainly expressed on natural killer (NK) cells, CD8+ T cells, CD4+ T cells and Treg cells. TIGIT competes with CD226 for binding with CD155. In cancers, CD155 has been reported to up-regulate on tumor cells, and TIGIT was found to increase on TILs.1 Activation of TIGIT/CD155 pathway would mediate immunosuppression in tumor; while blockade of TIGIT promotes anti-tumor immune response.MethodsAK126 and AK113 are two humanized anti-human TIGIT monoclonal antibodies developed by Akesobio. Binding activity of AK126 and AK113 to human TIGIT, and competitive binding activity with CD155 and CD112, were performed by using ELISA, Fortebio, and FACS assays. Cross-reactivity with cynomolgus monkey TIGIT and epitope binning were also tested by ELISA assay. In-vitro assay to investigate the activity to promote IL-2 secretion was performed in mixed-culture of Jurkat-TIGIT cells and THP-1 cells.ResultsAK126 and AK113 could specifically bind to human TIGIT with comparative affinity and effectively blocked the binding of human CD155 and CD112 to human TIGIT. X-ray crystal structure of TIGIT and PVR revealed the C’-C’’ loop and FG loop regions of TIGIT are the main PVR interaction regions.2 The only amino acid residue differences in these regions between human and monkey TIGIT are 70C and 73D. AK126 binds to both human and monkey TIGIT, AK113 binds only to monkey TIGIT. This suggests that these residues are required for AK113 binding to human TIGIT, but not required for AK126. Interestingly, results from cell-based assays indicated that AK126 and AK113 showed significantly different activity to induce IL-2 secretion in mixed-culture of Jurkat-TIGIT cells and THP-1 cells (figure 1A and B), in which AK126 had a comparable capacity of activity to 22G2, a leading TIGIT mAb developed by another company, to induce IL-2 secretion, while, AK113 showed a significantly higher capacity than 22G2 and AK126.Abstract 184 Figure 1Anti-TIGIT Antibodies Rescues IL-2 Production in Vitro T-Cell Activity Assay in a dose dependent manner. Jurkat-TIGIT cells (Jurkat cells engineered to over-express human TIGIT) were co-cultured with THP-1 cells, and stimulated with plate-bound anti-CD3 mAb in the presence of TIGIT ligand CD155 (A) or CD112 (B) with anti-TIGIT antibodies. After incubated for 48h at 37° C and 5.0% CO2, IL-2 levels were assessed in culture supernatants by ELISA. Data shown as mean with SEM for n = 2.ConclusionsWe discovered two distinct types of TIGIT antibodies with differences in both epitope binding and functional activity. The mechanism of action and clinical significance of these antibodies require further investigation.ReferencesSolomon BL, Garrido-Laguna I. TIGIT: a novel immunotherapy target moving from bench to bedside. Cancer Immunol Immunother 2018;67:1659–1667.Stengel KF, Harden-Bowles K, Yu X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 2012;109:5399–5404.


2021 ◽  
Vol 17 ◽  
Author(s):  
Brahim Asseli ◽  
Reguia Mahfoudi ◽  
Amar Djeridane ◽  
Mohamed Yousfi

Background: Research on medicinal plant antioxidants has emerged as a potential therapeutic to prevent free radical generated damage in the human body. Hammada elegans Botsch (popularly known as “Ajram”) is a xerophytic plant widely found in Laghouat region, but there are only a few reports about the biological or chemical properties of these species. Hence, the aim of this study is to investigate the antioxidant and the antihemolytic activities of hexanic, acetonic, methanolic and aqueous extracts of aerial parts of Algerian Hammada elegans Botsch by employing different in vitro assay systems. Methods: The total phenolic content, the flavonoid content and the condensed tannin amount were analyzed using Folin-Ciocalteu, aluminum chloride and vanillin assays, respectively. The in vitro antioxidant capacity of extracts was assessed by CUPRAC, iron chelating, ABTS•+and antihemolytic assays, and was expressed as EC50 values. Results: Among the analyzed extracts, the aqueous extract had the highest phenolic, flavonoid and tannin contents. Also, this extract displayed the highest antioxidant capacities compared to the other extracts and standards. Its EC50 value for ABTS radical-scavenging activity was 0.265 ± 0.003 mg/L. Moreover, this extract showed high iron (II) chelating ability (EC50 = 0.958 ± 0.001 mg/L), and good antioxidant activity in the cupric ion reducing activity (CUPRAC) in a concentration dependent manner (EC50 were 0.709 ± 0.002 mg/L). Additionally, this extract had the best antihemolytic activity against AAPH-induced hemolysis (EC50=0.090 ± 0.004 mg/L). Conclusion: Our study revealed that the aqueous extract of Hammada elegans Botsch, is a potential source of antioxidants which possess a high protective effect of membrane against free radical.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1388
Author(s):  
Luna Pollini ◽  
Alessandra Riccio ◽  
Cristina Juan ◽  
Carmela Tringaniello ◽  
Federica Ianni ◽  
...  

Nowadays, bioactive compounds from vegetable food and waste are of great interest for their inhibitory potential against digestive enzymes. In the present study, the inhibitory activity of methanolic extract from Lycium barbarum leaves on porcine pancreas α-amylase has been studied. The α-amylase inhibitory activity of the constituent phenolic acids was also investigated. The leaves were extracted by ultrasound-assisted method, one of the most efficient techniques for bioactive extraction from plant materials, and then the phenolic acids were identified by Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) Liquid Chromatography/Mass Spectrometry (LC/MS). Chlorogenic and salicylic acids were the most abundant phenolic acids in L. barbarum leaf extract. The inhibitory effect against α-amylase, determined for individual compounds by in vitro assay, was higher for chlorogenic, salicylic, and caffeic acids. L. barbarum leaf extract showed an appreciable α-amylase inhibitory effect in a concentration-dependent manner. Docking studies of the considered phenolic acids into the active site of α-amylase suggested a conserved binding mode that is mainly stabilized through H-bonds and π-π stacking interactions.


1998 ◽  
Vol 25 (5) ◽  
pp. 539 ◽  
Author(s):  
Helen R. Irving

Since receptor-coupled G proteins increase GTP hydrolysis (GTPase) activity upon ligands binding to the receptor, a study was undertaken to determine if abscisic acid (ABA) induced such an effect. Plasma membranes isolated from etiolated maize (Zea mays L.) coleoptiles were enriched in GTPase activity relative to microsomal fractions. Vanadate was included in the assay to inhibit the high levels of vanadate sensitive low affinity GTPases present. Under these conditions, GTPase activity was enhanced by Mg2+, stimulated by mastoparan, and inhibited by GTPγS indicating the presence of either monomeric or heterotrimeric G proteins. The combination of NaF and AlCl3 is expected to inhibit heterotrimeric G protein activity but had little effect on GTPase activity in maize coleoptile membranes. Cholera toxin enhanced basal GTPase activity, confirming the presence of heterotrimeric G proteins in maize plasma membranes. Pertussis toxin also slightly enhanced basal GTPase activity in maize membranes. Abscisic acid enhanced GTPase activity optimally at 5 mmol/L Mg2+ in a concentration dependent manner by 1.5-fold at 10 µmol/L and up to three-fold at 100 µmol/L ABA. Abscisic acid induced GTPase activity was inhibited by GTPγS, the combination of NaF and AlCl3, and pertussis toxin. Overall, these results are typical of a receptor-coupled G protein responding to its ligand.


2004 ◽  
Vol 15 (11) ◽  
pp. 4990-5000 ◽  
Author(s):  
Adriana Pagano ◽  
Pascal Crottet ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and γ-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5054-5054 ◽  
Author(s):  
Lourdes Florensa ◽  
Beatriz Bellosillo ◽  
Leonor Arenillas ◽  
Liandong Ma ◽  
Richard Walgren ◽  
...  

Abstract Abstract 5054 Introduction: The discovery of JAK2 V617F mutation in patients with myeloproliferative disorders (MPD) has opened new perspectives for the development of targeted therapies. We have studied the efficacy of a novel molecule LY2784544 with JAK2 inhibitory activity in the in vitro growth of myeloid progenitors from JAK2 V617F-positive polycythemia vera (PV) patients. Objectives: To investigate the efficacy of LY2784544 in the inhibition of endogenous(e)BFU-E and CFU-GM growth in PV patients. Methods: In vitro cultures in semisolid media were performed from peripheral blood mononuclear cells (PBMC) of 6 PV patients who had never received cytoreductive treatment (4 patients with homozygous JAK2 V617F and 2 patients with heterozygous JAK2 V617F). PBMC were suspended in methylcellulose (Methocult. StemCell, Vancouver, Canada) without the addition of EPO and containing 0–30.0 μM LY2784544 drug. Concurrent plates containing EPO were plated as control cultures. The medium was distributed in multidishes and they were incubated at 37° with 5% CO2 and 95% humidity. Hemoglobinized colonies and granulomonocytic colonies were counted on day 14 by standard criteria (BFU-E defined by an aggregate of >50 hemoglobinized cells or three or more erythroid subcolonies and CFU-GM was defined by an aggregate of >50 cells). Each in vitro assay was performed in duplicate. DNA was obtained from peripheral blood granulocytes from each patient to quantify the JAK2 V617F allele burden at the time of culture assay. Results: LY2784544, at concentrations ranging from 0.03–30.0 μM, inhibited growth of unselected peripheral blood eBFU-E and CFU-GM from PV patients carrying the JAK2 V617F mutation in a dose-dependent manner, although without achieving complete inhibition of all colonies (fig.1). Conclusions: In vitro studies show that LY2784544 decreases the eBFU-E and CFU-GM growth in therapy-naive JAK2 V617F positive PV patients. Our data suggest that LY2784544 may be a candidate for the treatment of MPD carrying the JAK2 V617F mutation. Disclosures: Ma: Eli Lilly and Company: Employment. Walgren:Eli Lilly and Company: Employment.


2003 ◽  
Vol 370 (2) ◽  
pp. 687-694 ◽  
Author(s):  
Fredrik MELANDER ◽  
Tommy ANDERSSON ◽  
Karim DIB

An early and critical event in β2 integrin signalling during neutrophil adhesion is activation of Src tyrosine kinases and Syk. In the present study, we report Src kinase-dependent β2 integrin-induced tyrosine phosphorylation of Cbl occurring in parallel with increased Cbl-associated tyrosine kinase activity. These events concurred with activation of Fgr and, surprisingly, also with dissociation of this Src tyrosine kinase from Cbl. Moreover, the presence of the Src kinase inhibitor PP1 in an in vitro assay had only a limited effect on the Cbl-associated kinase activity. These results suggest that an additional active Src-dependent tyrosine kinase associates with Cbl. The following observations imply that Syk is such a kinase: (i) β2 integrins activated Syk in a Src-dependent manner, (ii) Syk was associated with Cbl much longer than Fgr was, and (iii) the Syk inhibitor piceatannol (3,4,3′,5′-tetrahydroxy-trans-stilbene) abolished the Cbl-associated kinase activity in an in vitro assay. Effects of the mentioned interactions between these two kinases and Cbl may be related to the finding that Cbl is a ubiquitin E3 ligase. Indeed, we detected β2 integrin-induced ubiquitination of Fgr that, similar to the phosphorylation of Cbl, was abolished in cells pretreated with PP1. However, the ubiquitination of Fgr did not cause any apparent degradation of the protein. In contrast with Fgr, Syk was not modified by the E3 ligase. Thus Cbl appears to be essential in β2 integrin signalling, first by serving as a matrix for a subsequent agonist-induced signalling interaction between Fgr and Syk, and then by mediating ubiquitination of Fgr which possibly affects its interaction with Cbl.


2000 ◽  
Vol 20 (13) ◽  
pp. 4562-4571 ◽  
Author(s):  
Batool Ossareh-Nazari ◽  
Christèle Maison ◽  
Ben E. Black ◽  
Lyne Lévesque ◽  
Bryce M. Paschal ◽  
...  

ABSTRACT To better characterize the mechanisms responsible for RNA export from the nucleus, we developed an in vitro assay based on the use of permeabilized HeLa cells. This new assay supports nuclear export of U1 snRNA, tRNA, and mRNA in an energy- and Xenopusextract-dependent manner. U1 snRNA export requires a 5′ monomethylated cap structure, the nuclear export signal receptor CRM1, and the small GTPase Ran. In contrast, mRNA export does not require the participation of CRM1. We show here that NXT1, an NTF2-related protein that binds directly to RanGTP, strongly stimulates export of U1 snRNA, tRNA, and mRNA. The ability of NXT1 to promote export is dependent on its capacity to bind RanGTP. These results support the emerging view that NXT1 is a general export factor, functioning on both CRM1-dependent and CRM1-independent pathways of RNA export.


Sign in / Sign up

Export Citation Format

Share Document