cpg hypermethylation
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir. A. Ozcan ◽  
Layla T. Ghaffari ◽  
Aaron R. Haeusler

AbstractA nucleotide repeat expansion (NRE), (G4C2)n, located in a classically noncoding region of C9orf72 (C9), is the most common genetic mutation associated with ALS/FTD. There is increasing evidence that nucleic acid structures formed by the C9-NRE may both contribute to ALS/FTD, and serve as therapeutic targets, but there is limited characterization of these nucleic acid structures under physiologically and disease relevant conditions. Here we show in vitro that the C9-NRE DNA can form both parallel and antiparallel DNA G-quadruplex (GQ) topological structures and that the structural preference of these DNA GQs can be dependent on the molecular crowding conditions. Additionally, 5-methylcytosine DNA hypermethylation, which is observed in the C9-NRE locus in some patients, has minimal effects on GQ topological preferences. Finally, molecular dynamic simulations of methylated and nonmethylated GQ structures support in vitro data showing that DNA GQ structures formed by the C9-NRE DNA are stable, with structural fluctuations limited to the cytosine-containing loop regions. These findings provide new insight into the structural polymorphic preferences and stability of DNA GQs formed by the C9-NRE in both the methylated and nonmethylated states, as well as reveal important features to guide the development of upstream therapeutic approaches to potentially attenuate C9-NRE-linked diseases.


2020 ◽  
Vol 27 (39) ◽  
pp. 6596-6610 ◽  
Author(s):  
Geir Bjørklund ◽  
Lyudmila Pivina ◽  
Maryam Dadar ◽  
Yuliya Semenova ◽  
Salvatore Chirumbolo ◽  
...  

The risk assessment of mercury (Hg), in both wildlife and humans, represents an increasing challenge. Increased production of Reactive Oxygen Species (ROS) is a known Hg-induced toxic effect, which can be accentuated by other environmental pollutants and by complex interactions between environmental and genetic factors. Some epidemiological and experimental studies have investigated a possible correlation between brain tumors and heavy metals. Epigenetic modifications in brain tumors include aberrant activation of genes, hypomethylation of specific genes, changes in various histones, and CpG hypermethylation. Also, Hg can decrease the bioavailability of selenium and induce the generation of reactive oxygen that plays important roles in different pathological processes. Modification of of metals can induce excess ROS and cause lipid peroxidation, alteration of proteins, and DNA damage. In this review, we highlight the possible relationship between Hg exposure, epigenetic alterations, and brain tumors.


2020 ◽  
Author(s):  
Aiping Zhu ◽  
Kevin M Hopkins ◽  
Richard A Friedman ◽  
Joshua D Bernstock ◽  
Constantinos G Broustas ◽  
...  

Abstract Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Amit Tirosh ◽  
Jonathan Keith Killian ◽  
Petersen David ◽  
Yuelin Jack Zhu ◽  
Jenny Blau ◽  
...  

Abstract Objective There is scant data of the genome-wide methylome alterations in neuroendocrine tumors (NET). Thus, the goal of this study was to compare the DNA methylation signature of NETs with respect to various primary sites and inherited genetic predisposition syndromes including von Hippel-Lindau (VHL) and multiple endocrine neoplasia type 1 (MEN1). Methods Genome-wide DNA methylation analysis of 96 NETs (primary and metastatic) was performed by using the Illumina Infinium EPIC Array. Principal component analysis (PCA) and unsupervised clustering analyses were performed to identify distinct methylome signatures. The methylation status of genetic drivers such as APC were assessed by primary site. Results A total of 835,424 CpGs methylation sites were quantified. Hypermethylated CpG sites were detected more frequently in sporadic vs. MEN1-related vs. VHL-related NETs, respectively (p < 0.001 for all comparisons), while hypomethylated CpGs sites were more common in VHL-related NETs vs. sporadic and MEN1-related NETs (p<0.001 for both comparisons). Small-intestinal NETs (SINETs) had the most differences at CpGs with the highest number of hyper- and hypomethylated CpG sites, followed by duodenal NETs (DNETs) and pancreatic NETs (PNETs, p<0.001 for all comparisons). PCA showed distinct clustering of SINETs and three NETs of unknown primary. Sporadic, VHL-related and MEN1-related PNETs formed distinct groups on PCA. VHL-related NETs clustered separately showing pronounced CpG hypomethylation, while sporadic and MEN1-related NETs clustered together showing relative CpG hypermethylation. In a subgroup analysis, MEN1-related SINETs, DNETs and gastric NETs had distinct methylome signatures, respectively, with complete separation by PCA and unsupervised hierarchical clustering. Furthermore, we found CpG hypermethylation in the APC (adenomatous polyposis coli) gene, specifically in the 1A promoter, with higher methylation levels in gastric- and DNETs vs. SINETs, PNETs and NETs of unknown primary (p < 0.001 for all comparisons). Conclusion Various primary NET sites and genetically predisposed MEN1-related NETs have distinct DNA CpG methylation signatures. The methylome signatures identified in this study may be useful for non-invasive molecular characterization of NETs, through DNA methylation profiling of biopsy samples or circulating tumor DNA.


2020 ◽  
Vol 66 (1) ◽  
pp. 13-22
Author(s):  
Dmitriy Gvaldin ◽  
Yekaterina Omelchuk ◽  
Natalya Timoshkina ◽  
Vladimir Trifanov ◽  
Yuriy Sidorenko

The association of genetic driver changes in gastrointestinal stromal tumors (GIST) with clinical implications is the most studied aspect in all solid tumors. Genotyping of particular exons c-KIT and PDGFRA included in the standard practice of diagnosis and treatment of GIST. The review analyzes the current understanding of the molecular-genetic mechanisms and markers that underlie the GIST profiling. Of particular interest are wild-type tumors of c-KIT and PDGFRA, in which activating mutations of the RAS, BRAF and EGFR oncogenes are found, associated with the early stages of disease progression. The data of studies of genetic and epigenetic changes in GIST, which revealed the prognostic value of inactivation of CDKN2A and p53, deletions of 22q, 1p and 15q, CpG hypermethylation are presented. New factors that determine a high risk of progression of GISTs are described: inactivation of dystrophin, DNA hypomethylation, increased expression of miRNAs and HOTAIR. The progress achieved in understanding the molecular mechanisms of GISTs give the opportunity of developing and effectively applying new therapeutic approaches, expanding the range of molecular genetic markers that determine patient surveillance.


2018 ◽  
Author(s):  
Michal R Gdula ◽  
Tatyana B Nesterova ◽  
Greta Pintacuda ◽  
Jonathan Godwin ◽  
Ye Zhan ◽  
...  

AbstractThe inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), and formation of two mega-domains. In this study we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 null cells revealed the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred in an acute SmcHD1 knockout model, but in this case, independent of Xi gene de-repression. We conclude that SmcHD1 is a key factor in antagonising TAD formation on Xi.


2018 ◽  
Vol 29 (5) ◽  
pp. 1566-1576 ◽  
Author(s):  
Line Heylen ◽  
Bernard Thienpont ◽  
Maarten Naesens ◽  
Pieter Busschaert ◽  
Jeroen Depreeuw ◽  
...  

Background Ischemia during kidney transplant causes chronic allograft injury and adversely affects outcome, but the underlying mechanisms are incompletely understood. In tumors, oxygen shortage reduces the DNA demethylating activity of the ten-11 translocation (TET) enzymes, yielding hypermethylated genomes that promote tumor progression. We investigated whether ischemia similarly induces DNA hypermethylation in kidney transplants and contributes to chronic injury.Methods We profiled genome-wide DNA methylation in three cohorts of brain-dead donor kidney allograft biopsy specimens: a longitudinal cohort with paired biopsy specimens obtained at allograft procurement (preischemia; n=13), after implantation and reperfusion (postischemia; n=13), and at 3 or 12 months after transplant (n=5 each); a cross-sectional cohort with preimplantation biopsy specimens (n=82); and a cross-sectional cohort with postreperfusion biopsy specimens (n=46).Results Analysis of the paired preischemia and postischemia specimens revealed that methylation increased drastically in all allografts on ischemia. Hypermethylation was caused by loss of 5-hydroxymethylcytosine, the product of TET activity, and it was stable 1 year after transplant. In the preimplantation cohort, CpG hypermethylation directly correlated with ischemia time and for some CpGs, increased 2.6% per additional hour of ischemia. Hypermethylation preferentially affected and reduced the expression of genes involved in suppressing kidney injury and fibrosis. Moreover, CpG hypermethylation in preimplantation specimens predicted chronic injury, particularly fibrosis and glomerulosclerosis, 1 year after transplant. This finding was validated in the independent postreperfusion cohort, in which hypermethylation also predicted reduced allograft function 1 year after transplant, outperforming established clinical variables.Conclusions We highlight a novel epigenetic basis for ischemia-induced chronic allograft injury with biomarker potential.


Sign in / Sign up

Export Citation Format

Share Document