scholarly journals Loss of BOP1 confers resistance to BRAF kinase inhibitors in melanoma by activating MAP kinase pathway

2019 ◽  
Vol 116 (10) ◽  
pp. 4583-4591 ◽  
Author(s):  
Romi Gupta ◽  
Suresh Bugide ◽  
Biao Wang ◽  
Michael R. Green ◽  
Douglas B. Johnson ◽  
...  

Acquired resistance to BRAF kinase inhibitors (BRAFi) is the primary cause for their limited clinical benefit. Although several mechanisms of acquired BRAFi resistance have been identified, the basis for acquired resistance remains unknown in over 40% of melanomas. We performed a large-scale short-hairpin RNA screen, targeting 363 epigenetic regulators and identified Block of Proliferation 1 (BOP1) as a factor the loss of which results in resistance to BRAFi both in cell culture and in mice.BOP1knockdown promoted down-regulation of the MAPK phosphatases DUSP4 and DUSP6 via a transcription-based mechanism, leading to increased MAPK signaling and BRAFi resistance. Finally, analysis of matched patient-derived BRAFi or BRAFi+MEKi pre- and progressed melanoma samples revealed reduced BOP1 protein expression in progressed samples. Collectively, our results demonstrate that loss of BOP1 and the resulting activation of the MAPK pathway is a clinically relevant mechanism for acquired resistance to BRAFi in melanoma.

2013 ◽  
Vol 4 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Nikhil Wagle ◽  
Eliezer M. Van Allen ◽  
Daniel J. Treacy ◽  
Dennie T. Frederick ◽  
Zachary A. Cooper ◽  
...  

2017 ◽  
Vol 214 (6) ◽  
pp. 1691-1710 ◽  
Author(s):  
Helen L. Young ◽  
Emily J. Rowling ◽  
Mattia Bugatti ◽  
Emanuele Giurisato ◽  
Nadia Luheshi ◽  
...  

Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of tumor-associated macrophages and fibroblasts contribute to treatment tolerance through a cytokine-signaling network that involves macrophage-derived IL-1β and fibroblast-derived CXCR2 ligands. Fibroblasts require IL-1β to produce CXCR2 ligands, and loss of host IL-1R signaling in vivo reduces melanoma growth. In tumors from patients on treatment, signaling from inflammatory niches is amplified in the presence of MAPK inhibitors. Signaling from inflammatory niches counteracts combined BRAF/MEK (MAPK/extracellular signal–regulated kinase kinase) inhibitor treatment, and consequently, inhibiting IL-1R or CXCR2 signaling in vivo enhanced the efficacy of MAPK inhibitors. We conclude that melanoma inflammatory niches adapt to and confer drug tolerance toward BRAF and MEK inhibitors early during treatment.


2009 ◽  
Vol 20 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Patricia Garcia ◽  
Virginia Tajadura ◽  
Yolanda Sanchez

The Schizosaccharomyces pombe exchange factor Rgf1p specifically regulates Rho1p during polarized growth. Rgf1p activates the β-glucan synthase (GS) complex containing the catalytic subunit Bgs4p and is involved in the activation of growth at the second end, a transition that requires actin reorganization. In this work, we investigated Rgf1p signaling and observed that Rgf1p acted upstream from the Pck2p-Pmk1p MAPK signaling pathway. We noted that Rgf1p and calcineurin play antagonistic roles in Cl− homeostasis; rgf1Δ cells showed the vic phenotype (viable in the presence of immunosuppressant and chlorine ion) and were unable to grow in the presence of high salt concentrations, both phenotypes being characteristic of knockouts of the MAPK components. In addition, mutations that perturb signaling through the MAPK pathway resulted in defective cell integrity (hypersensitivity to caspofungin and β-glucanase). Rgf1p acts by positively regulating a subset of stimuli toward the Pmk1p-cell integrity pathway. After osmotic shock and cell wall damage HA-tagged Pmk1p was phosphorylated in wild-type cells but not in rgf1Δ cells. Finally, we provide evidence to show that Rgf1p regulates Pmk1p activation in a process that involves the activation of Rho1p and Pck2p, and we demonstrate that Rgf1p is unique in this signaling process, because Pmk1p activation was largely independent of the other two Rho1p-specific GEFs, Rgf2p and Rgf3p.


2006 ◽  
Vol 11 (4) ◽  
pp. 423-434 ◽  
Author(s):  
Charlotta Grånäs ◽  
Betina Kerstin Lundholt ◽  
Frosty Loechel ◽  
Hans-Christian Pedersen ◽  
Sara Petersen Bjørn ◽  
...  

The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution® assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution® assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC50 =< 5 μM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution® screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 7-7
Author(s):  
Vijay P.S. Rawat ◽  
Natalia Arseni Arseni ◽  
Vegi M. Naidu ◽  
John P. Lynch ◽  
Wolfgang Hiddemann ◽  
...  

Abstract In AML the translocation t(12;13)(p13;q12) results in the ectopic expression of the homeobox gene Cdx2 and the expression of the ETV6-CDX2 fusion. We have shown that the ectopic expression of the proto-oncogene Cdx2 and not the expression of the ETV6-CDX2 fusion is the key event in initiating myeloid leukemogenesis in a murine model of t(12;13) AML (PNAS, Rawat et. al. 2004). We now analyzed the functional relevance of the different Cdx2 domains and explored the potential of kinase inhibitors to antagonize Cdx2 induced leukemia. For this we generated different mutants, inactivating the PBX1-interacting motif (W167A-Cdx2), or deleting the N-terminal transactivation domain (Ndel-Cdx2). Expression of Cdx2 and the different mutants was induced in primary murine BM cells by retroviral gene transfer. Target genes were identified by cDNA microarray analysis. Mice transplanted with BM cells expressing Cdx2 and its W167A-Cdx2 mutant developed transplantable AML (n=14, avg. latency 90 days). In contrast, mice transplanted with the NDel-Cdx2 mutant did not show any leukemic phenotype in vivo (n=13). In order to identify gene expression signatures associated with Cdx2 induced transformation, we performed microarray analysis on highly purified normal Sca1+/lin− HSC and Sca1+/lin+ progenitor cells transduced with the leukemogenic Cdx2 compared to the non-leukemogenic NDel-Cdx2 mutant and the GFP control vector after 72h of retrovirally induced expression of the different constructs. Compared to the NDel-Cdx2 mutant and the GFP control Cdx2 up regulated genes, which are associated with self-renewal (Wint2, Hoxb3, Etv6, Abcg2,), leukemogenesis (Lmo2, Pim-2, Hoxa9) and in signal transduction pathways (e.g. MAPK family). In addition, Cdx2 transduced BM cells showed an activated Erk1/2 pathway on the protein level. Based on these results we tested whether inhibition of the MAPK pathway would impair the leukemogenic potential of Cdx2. When Cdx2 transduced BM cells were incubated with the MEK1/2 inhibitor PD98059, a 78% reduction of viable cells (n=3, p&lt;0.03) and of the proportion of blast-like Sca1+ positive cells were observed compared to untreated cells (n=3, p&lt;0.005) in liquid culture after 7 days. Furthermore, incubation with the MEK1/2 inhibitor PD98059 decreased the activity of Cdx2 at the level of the short-term repopulating stem cell 8-fold as assessed in the ΔCFU-S after 7 days in vitro culture (n=7, p&lt;0.001). In contrast, incubation with the p38 specific inhibitor SB 28049 did not show any decrease in Cdx2 activity in ΔCFU-S assay, indicating that the transforming potential of Cdx2 depends on the MEK1/2 pathway, but not on the p38 pathway. These data demonstrate that the leukemogenic potential of the homeobox gene Cdx2 depends on the N-terminal activation domain. Furthermore, our data link the oncogenic capacity of the transcription factor Cdx2 to MAPK signaling, opening the possibility to counteract homeobox-associated leukemogenesis by kinase inhibitors.


2020 ◽  
Vol 31 (6) ◽  
pp. 491-510 ◽  
Author(s):  
Sukanya Basu ◽  
Beatriz González ◽  
Boyang Li ◽  
Garrett Kimble ◽  
Keith G. Kozminski ◽  
...  

How Rho GTPases are directed to effector pathways is an important question. We show here that BEM-type adaptors play unique roles in sequentially directing Cdc42 to an effector MAPK pathway. Our study may provide insight into Rho GTPase specification in other systems.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1081 ◽  
Author(s):  
Luigi Chiricosta ◽  
Agnese Gugliandolo ◽  
Giuseppe Tardiolo ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Vitamin E family is composed of different tocopherols and tocotrienols that are well-known as antioxidants but that exert also non-antioxidant effects. Oxidative stress may be involved in the progression of neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), characterized by motor neuron death. The aim of the study was the evaluation of the changes induced in the transcriptional profile of NSC-34 motor neurons treated with α-tocopherol. In particular, cells were treated for 24 h with 10 µM α-tocopherol, RNA was extracted and transcriptomic analysis was performed using Next Generation Sequencing. Vitamin E treatment modulated MAPK signaling pathway. The evaluation revealed that 34 and 12 genes, respectively belonging to “Classical MAP kinase pathway” and “JNK and p38 MAP kinase pathway”, were involved. In particular, a downregulation of the genes encoding for p38 (Log2 fold change −0.87 and −0.67) and JNK (Log2 fold change −0.16) was found. On the contrary, the gene encoding for ERK showed a higher expression in cells treated with vitamin E (Log2 fold change 0.30). Since p38 and JNK seem more involved in cell death, while ERK in cell survival, the data suggested that vitamin E treatment may exert a protective role in NSC-34 motor neurons. Moreover, Vitamin E treatment reduced the expression of the genes which encode proteins involved in mitophagy. These results indicate that vitamin E may be an efficacious therapy in preventing motor neuron death, opening new strategies for those diseases that involve motor neurons, including ALS.


2018 ◽  
pp. 1-18 ◽  
Author(s):  
Matthew J. Wongchenko ◽  
Antoni Ribas ◽  
Paolo A. Ascierto ◽  
Brigitte Dréno ◽  
Anna Maria di Giacomo ◽  
...  

Purpose The treatment of advanced BRAFV600-mutated melanomas with BRAF inhibitors (BRAFi) has improved survival, but the efficacy of BRAFi varies among individuals and the development of acquired resistance to BRAFi through reactivation of mitogen-activated protein kinase (MAPK) signaling is common. We performed an exploratory, retrospective analysis to investigate the effects of BRAFV600 allelic balance, coexisting oncogene mutations, cell proliferation signaling levels, and loss of PTEN expression on progression-free survival (PFS) in patients in the phase III coBRIM study, which compared the combination of the MEK inhibitor cobimetinib with the BRAFi vemurafenib versus vemurafenib as monotherapy. Methods Baseline tumor samples from the intention-to-treat population were analyzed by targeted deep sequencing at a median coverage of 3,600× and by immunohistochemistry for cell proliferation markers, BRAFV600E, and PTEN. The association of these biomarkers with PFS was assessed by Cox proportional hazards modeling. Gene expression in relation to loss of PTEN was profiled by RNA sequencing in 205 patient samples and 42 BRAFV600-mutated melanoma cell lines. Results Neither BRAFV600 allelic balance nor coexisting mutations in the RAS/RAF/RTK pathway affected PFS in either treatment group. Increased baseline MAPK signaling and cell proliferation did not affect PFS in patients treated with cobimetinib combined with vemurafenib. PTEN loss was associated with reduced PFS in patients treated with vemurafenib alone but not in patients treated with cobimetinib combined with vemurafenib. Conclusion Deeper inhibition of the MAPK pathway through targeting of both MEK and BRAF may override the effects of tumor heterogeneity and improve PFS in all patients with advanced BRAFV600 melanoma.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi151-vi152
Author(s):  
Lucas Calixto-Hope ◽  
Julieann Lee ◽  
Emily Sloan ◽  
Jeffrey Hofmann ◽  
Jessica Van Ziffle ◽  
...  

Abstract BACKGROUND Rosette-forming glioneuronal tumor (RGNT) is an uncommon CNS tumor originally described in the fourth ventricle characterized by a low-grade glial neoplasm admixed with a rosette-forming neurocytic component. METHODS We reviewed clinicopathologic features of 42 patients with RGNT. Targeted next-generation sequencing was performed, and genome-wide methylation profiling is underway. RESULTS The 20 male and 22 female patients had a mean age of 25 years (range 3–47) at time of diagnosis. Tumors were located within or adjacent to the lateral ventricle (n=16), fourth ventricle (15), third ventricle (9), and spinal cord (2). All 31 tumors assessed to date contained FGFR1 activating alterations, either in-frame gene fusion, kinase domain tandem duplication, or hotspot missense mutation in the kinase domain (p.N546 or p.K656). While 7 of these 31 tumors harbored FGFR1 alterations as the solitary pathogenic event, 24 contained additional pathogenic alterations within PI3-kinase or MAP kinase pathway genes: 5 with additional PIK3CA and NF1 mutations, 4 with PIK3CA mutation, 3 with PIK3R1 mutation (one of which also contained focal RAF1 amplification), 5 with PTPN11 mutation (one with additional PIK3R1 mutation), and 2 with NF1 deletion. The other 5 cases demonstrated anaplastic features including hypercellularity and increased mitotic activity. Among these anaplastic cases, 3 harbored inactivating ATRX mutations and two harbored CDKN2A homozygous deletion, in addition to the FGFR1 alterations plus other PI3-kinase and MAP kinase gene mutations seen in those RGNT without anaplasia. CONCLUSION Independent of ventricular location, RGNT is defined by FGFR1 activating mutations or rearrangements, which are frequently accompanied by mutations involving PIK3CA, PIK3R1, PTPN11, NF1, and KRAS. Whereas pilocytic astrocytoma and ganglioglioma are characterized by solitary activating MAP kinase pathway alterations (e.g. BRAF fusion or mutation), RGNT are genetically more complex with dual PI3K-Akt-mTOR and Ras-Raf-MAPK pathway activation. Rare anaplastic examples may show additional ATRX and/or CDKN2A inactivation.


Sign in / Sign up

Export Citation Format

Share Document