CMOS CDBA-Based Low-Voltage Low-Power Universal Filter

Author(s):  
Komal ◽  
Ramnish Kumar ◽  
K. L. Pushkar
2015 ◽  
Vol 46 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Maneesha Gupta ◽  
Richa Srivastava ◽  
Urvashi Singh

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 765 ◽  
Author(s):  
Leila Safari ◽  
Gianluca Barile ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

In this paper, a new low-voltage low-power dual-mode universal filter is presented. The proposed circuit is implemented using inverting current buffer (I-CB) and second-generation voltage conveyors (VCIIs) as active building blocks and five resistors and three capacitors as passive elements. The circuit is in single-input multiple-output (SIMO) structure and can produce second-order high-pass (HP), band-pass (BP), low-pass (LP), all-pass (AP), and band-stop (BS) transfer functions. The outputs are available as voltage signals at low impedance Z ports of the VCII. The HP, BP, AP, and BS outputs are also produced in the form of current signals at high impedance X ports of the VCIIs. In addition, the AP and BS outputs are also available in inverting type. The proposed circuit enjoys a dual-mode operation and, based on the application, the input signal can be either current or voltage. It is worth mentioning that the proposed filter does not require any component matching constraint and all sensitivities are low, moreover it can be easily cascadable. The simulation results using 0.18 μm CMOS technology parameters at a supply voltage of ±0.9 V are provided to support the presented theory.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2014 ◽  
Vol 23 (08) ◽  
pp. 1450108 ◽  
Author(s):  
VANDANA NIRANJAN ◽  
ASHWANI KUMAR ◽  
SHAIL BALA JAIN

In this work, a new composite transistor cell using dynamic body bias technique is proposed. This cell is based on self cascode topology. The key attractive feature of the proposed cell is that body effect is utilized to realize asymmetric threshold voltage self cascode structure. The proposed cell has nearly four times higher output impedance than its conventional version. Dynamic body bias technique increases the intrinsic gain of the proposed cell by 11.17 dB. Analytical formulation for output impedance and intrinsic gain parameters of the proposed cell has been derived using small signal analysis. The proposed cell can operate at low power supply voltage of 1 V and consumes merely 43.1 nW. PSpice simulation results using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC) are included to prove the unique results. The proposed cell could constitute an efficient analog Very Large Scale Integration (VLSI) cell library in the design of high gain analog integrated circuits and is particularly interesting for biomedical and instrumentation applications requiring low-voltage low-power operation capability where the processing signal frequency is very low.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Sign in / Sign up

Export Citation Format

Share Document