cci model
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Reiko Nobuhara ◽  
Akihiro Ito ◽  
Masafumi Nakagawa ◽  
Tatsunori Ikemoto ◽  
Kimimasa Narita ◽  
...  

: Rodent behavior assessments have been developed to evaluate pain. However, their fidgety activity and reactivity to human contact make it hard to activate animals in a consistent manner and get uniform and trustworthy responses. The present study was performed on prairie voles (aged 8 weeks). Sham (7 male prairie voles) and chronic constriction injury (CCI) (8 male prairie voles) rodents were investigated before surgery and four and seven days later. Each animal was assessed for nociceptive behavior. Pressure and mechanical threshold tests were conducted by the application of three different pushers to the center of hind paws and arterial clips to the toes while sedated with isoflurane. The CCI affected right lower extremity prominently increased nociceptive behavior scores four and seven days after the experiment, and the CCI affected right hind paw prominently decreased pressure and mechanical threshold tests four and seven days after the experiment . The pressure and mechanical thresholds were relevant to the scorings of nociceptive behavior in CCI model animals.


2021 ◽  
Vol 0 (0) ◽  
pp. 1-19
Author(s):  
Mohammad Shabani ◽  
◽  
Elham Hasanpour ◽  
Mojgan Mohammadifar ◽  
Fereshteh Bahmani ◽  
...  

Background: Neuropathic pain is a common and painful somatosensory nervous system disease, and its treatment remains a medical challenge. Evidence demonstrates that gut microbiota alters in neuropathic pain and, therefore, improvement of the gut flora may affect the disease. The present study aimed to evaluate the antinociceptive effect of probiotics in neuropathic pain and oxidative biomarkers' responsiveness to the probiotic treatment. Methods: Using chronic constriction injury (CCI) of the rats' sciatic nerve, neuropathic pain was induced. Investigating the analgesic effect of the probiotics mixture, 40 male rats were randomly assigned to 4 groups (n=10 for each): Sham-operated (SM), and CCI model rats have orally received 1 ml saline (CS), or 100 mg/kg Gabapentin (CG) or 1 ml probiotics mixture (CP) Lactobacillus plantarum, Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Bifidobacterium bifidum (109 CFU of each) daily. Using behavioral tests, the pain was assessed on days 1, 4, 7, 14, and 21 of the study. Finally, the biochemical evaluation of sciatic nerve tissue was done. Results: Probiotics decreased cold and mechanic allodynia and thermal hyperalgesia. Reducing lipid peroxidation level and increasing total antioxidant capacity, SOD, and GPx activity was also significant in the probiotics group. Conclusions: These findings suggest that probiotics have analgesic effects on the chronic constriction injury (CCI) model of neuropathic pain via increasing antioxidant capacity of the rats' sciatic nerve.


2021 ◽  
Vol 15 ◽  
Author(s):  
Zhan-ying Lu ◽  
Juan Fan ◽  
Li-hua Yu ◽  
Bei Ma ◽  
Li-ming Cheng

Trigeminal neuralgia (TN) is a severe chronic neuropathic pain. Despite numerous available medical interventions, the therapeutic effects are not ideal. To control the pain attacks, the need for more contemporary drugs continues to be a real challenge. Our previous study reported that Ca2+-activated K+ channels (BKCa) channels modulated by mitogen-activated protein kinases (MAPKs) in the trigeminal ganglia (TG) neurons play crucial roles in regulating TN, and some research studies demonstrated that inflammatory cytokine tumor necrosis factor alpha (TNF-α) could promote neuropathic pain. Meanwhile, the trigeminal nucleus caudalis (TNC), the first central site of the trigeminal nociceptive pathway, is responsible for processing sensory and pain signals from the peripheral orofacial area. Thus, this study is aimed to further investigate whether TNF-α and MAPKs phosphorylation in the TNC could mediate the pathogenesis of TN by modulating BKCa channels. The results showed that TNF-α of the TNC region is upregulated significantly in the chronic constriction injury of infraorbital nerve (ION-CCI) rats model, which displayed persistent facial mechanical allodynia. The normal rats with target injection of exogenous TNF-α to the fourth brain ventricle behaved just like the ION-CCI model rats, the orofacial mechanical pain threshold decreased clearly. Meanwhile, the exogenous TNF-α increased the action potential frequency and reduced the BKCa currents of TNC neurons significantly, which could be reversed by U0126 and SB203580, the inhibitors of MAPK. In addition, U0126, SB203580, and another MAPK inhibitor SP600125 could relieve the facial mechanical allodynia by being injected into the fourth brain ventricle of ION-CCI model rats, respectively. Taken together, our work suggests that the upregulation of TNF-α in the TNC region would cause the increase of MAPKs phosphorylation and then the negative regulation of BKCa channels, resulting in the TN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdalla Z. Mohamed ◽  
Paul Cumming ◽  
Fatima A. Nasrallah

AbstractPrevious neuroimaging studies in rodents investigated effects of the controlled cortical impact (CCI) model of traumatic brain injury (TBI) within one-month post-TBI. This study extends this temporal window to monitor the structural–functional alterations from two hours to six months post-injury. Thirty-seven male Sprague–Dawley rats were randomly assigned to TBI and sham groups, which were scanned at two hours, 1, 3, 7, 14, 30, 60 days, and six months following CCI or sham surgery. Structural MRI, diffusion tensor imaging, and resting-state functional magnetic resonance imaging were acquired to assess the dynamic structural, microstructural, and functional connectivity alterations post-TBI. There was a progressive increase in lesion size associated with brain volume loss post-TBI. Furthermore, we observed reduced fractional anisotropy within 24 h and persisted to six months post-TBI, associated with acutely reduced axial diffusivity, and chronic increases in radial diffusivity post-TBI. Moreover, a time-dependent pattern of altered functional connectivity evolved over the six months’ follow-up post-TBI. This study extends the current understanding of the CCI model by confirming the long-term persistence of the altered microstructure and functional connectivity, which may hold a strong translational potential for understanding the long-term sequelae of TBI in humans.


2021 ◽  
Vol 16 (4) ◽  
pp. 1343-1355
Author(s):  
Heny Ekawati Haryono ◽  
Achmad Samsudin ◽  
Khafidhoh Nurul Aini ◽  
Parsaoran Siahaan

The purpose of this research is to see what physics misconceptions students have regarding heat material. This study employs a three-tier diagnostic exam designed to identify students' physics misunderstandings. 150 grade VII students from five Lamongan district state junior high schools were included in the study. Creating a closed-ended the students' responses to the cognitive conflict instruction are used to create a three-tier instrument (CCI). The findings of the research revealed that the CCI is a viable and reliable tool for detecting misunderstandings. The findings of the detection of misconceptions in participants revealed that 45 % of pupils met the mastery criteria, 35 % met the misconception criteria, and 10% met the guessing requirement. Keywords: Misconception, heat material, three-tier test


2021 ◽  
Vol Volume 14 ◽  
pp. 1289-1301
Author(s):  
Guangyao Ye ◽  
Chunyan Lin ◽  
Yu Zhang ◽  
Zihan Ma ◽  
Yuebo Chen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Tan ◽  
Ning Wang ◽  
Zhilin Gu ◽  
Jiebin Zhu ◽  
Chunyan Liu ◽  
...  

Orexin is an important neuropeptide that stimulates cortical activation and arousal and is involved in the regulation of wakefulness and arousal. Our previous meta-analysis showed that acupuncture fared well in the treatment of TBI-induced DOC in which “shuigou (DU 26)” was the most important and frequent point targeted. In the present study, we investigated whether electroacupuncture (EA) promotes TBI-induced unconsciousness wakefulness via orexin pathway. A TBI rat model was established using a control cortical impact (CCI) model. In the stimulated group, TBI rats received EA (15 Hz, 1.0 mA, 15 min). In the antagonist group, TBI rats were intraperitoneally injected with the orexin receptor 1 (OX1R) antagonist SB334867 and received EA. Unconsciousness time was observed in each group after TBI, and electrocorticography (ECoG) was applied to detect rats’ EEG activity. Immunohistochemistry, enzyme-linked immunosorbent assay, and western blot were used to assess the levels of orexin-1(OX1) and OX1R expression in the mPFC. We show that duration of unconsciousness and the ratio of delta power in ECoG in the EA group were significantly reduced compared with those in the TBI group. EA could increase OX1 and OX1R expression in the mPFC and reduced the loss of orexin-producing neurons in LHA. However, all the efficacy of EA was blocked by the OX1R antagonist SB334867. Our findings suggest that EA promotes the recovery of consciousness of TBI-induced unconscious rats via upregulation of OX1and OX1R expression in mPFC.


Author(s):  
Dominik Appel ◽  
Regina Hummel ◽  
Martin Weidemeier ◽  
Kristina Endres ◽  
Christina Gölz ◽  
...  

The α-secretase A disintegrin and metalloprotease 10 (ADAM10) regulates various physiological and pathophysiological processes. Despite its broad functional implications during development, plasticity, and disease, no pharmacological approaches to inhibit ADAM10 in acute brain injury have been reported. Here, we examined the effects of the ADAM10 inhibitor GI254023X on the neurological and histopathological outcome after experimental traumatic brain injury (TBI). C57BL/6N mice were subjected to the controlled cortical impact (CCI) model of TBI or sham procedure and received GI254023X or vehicle during the acute phase of injury (n = 40, 100 mg/kg, 25% DMSO, 0.1 M Na2CO3, intraperitoneal, 30 min and 24 h after TBI). GI254023X treatment did not improve neurological deficits from 1 to 7 days post-injury (dpi) but animals treated with GI254023X exhibited smaller brain lesions compared to vehicle treatment. Determination of brain mRNA expression by quantitative PCR showed that TBI-induced up-regulation of Adam10 and Adam17 was not influenced by GI254023X but the up-regulation of the matrix metalloproteinase genes Mmp2 and Mmp9 was attenuated. GI254023X treatment further increased the T cell marker Cd247 but did not affect blood brain barrier integrity, as assessed by Occludin mRNA expression and IgG brain extravasation. However, in agreement with neuroprotective effects of ADAM10 inhibition, GI254023X treatment attenuated axonal injury, as indicated by decreased generation of spectrin breakdown products (SBDPs) and decreased immunostaining using anti-non-phosphorylated neurofilament (SMI-32). Interestingly, reduced axonal injury in GI254023X-treated animals coincided with subtle mRNA dysregulation in the glutamate receptor subunit genes Gria1 and Grin2b. Quantitative PCR also revealed that GI254023X mitigated up-regulation of the pro-inflammatory markers Il6, Tnfa, and Lcn2 but not the up-regulation of the pan-microglia marker Aif1, the M2 microglia marker Arg1 and the reactive astrocyte marker Gfap. Taken together, the ADAM10 inhibitor GI254023X attenuates brain tissue loss, axonal injury and pro-inflammatory gene expression in the CCI model of TBI. These results suggest that ADAM10 may represent a therapeutic target in the acute phase of TBI.


2020 ◽  
Author(s):  
Rishi R. Agrawal ◽  
Delfina Larrea ◽  
Lingyan Shi ◽  
Donghui Song ◽  
Yimeng Xu ◽  
...  

AbstractTraumatic brain injury (TBI) is a major cause of death and disability in the United States. A history of TBI can lead to neurodegenerative diseases such as Alzheimer’s disease (AD) in a severity- and frequency-dependent manner. We previously reported that early stages of AD are characterized by alterations in lipid metabolism due to upregulated functionality of mitochondria-associated ER membranes (“MAM” domains of the ER), a cellular hub of lipid metabolic regulation. This can be caused by increased localization of amyloid precursor protein (APP)’s C-terminal fragment of 99 a.a. (C99) at MAM, which promotes cellular cholesterol uptake and trafficking to the ER. Through this mechanism, MAM-localized C99 can stimulate MAM functionality. In this study, we recapitulate these phenotypes in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, we observed increased phospholipid synthesis, sphingomyelinase activity and cholesterol esterification in the cortex and hippocampus 1, 3 and 7 days after injury. These responses were predominant in microglia, and coincided with increased levels of MAM-localized C99. Altogether, we propose that upregulation of MAM functionality could contribute, in part, to the epidemiological connection between TBI and AD.


Pain Medicine ◽  
2020 ◽  
Author(s):  
Priscila Medeiros ◽  
Ieda Regina dos Santos ◽  
Ivair Matias Júnior ◽  
Enza Palazzo ◽  
José Aparecido da Silva ◽  
...  

Abstract Background Chronic constriction injury (CCI) is a model of neuropathic pain induced by four loose ligatures around the sciatic nerve. This work aimed to investigate the sensory, affective, cognitive, and motor changes induced by an adaptation of the CCI model by applying a single ligature around the sciatic nerve. Methods Mechanical allodynia was measured from day 1 to day 28 postsurgery by the von Frey test. The beam walking test (BWT) was conducted weekly until 28 days after surgery. Anxiety- and depression-like behaviors, and cognitive performance were assessed through the open field (OF), forced swimming (FS), and novel object recognition (NOR) tests, respectively, 21 days after surgery. Results The two CCI models, both Bennett and Xie’s model (four ligatures of the sciatic nerve) and a modification of it (one ligature), induced mechanical allodynia, increased immobility in the FS, and reduced recognition index in the NOR. The exploratory behavior and time spent in the central part of the arena decreased, while the defensive behavior increased in the OF. The animals subjected to the two CCI models showed motor alterations in the BWT; however, autotomy was observed only in the group with four ligatures and not in the group with a single ligature. Conclusions Overall these results demonstrate that our adapted CCI model, using a single ligature around the sciatic nerve, induces sensory, affective, cognitive, and motor alterations comparable to the CCI model with four ligatures without generating autotomy. This adaptation to the CCI model may therefore represent an appropriate and more easily performed model for inducing neuropathic pain and study underlying mechanisms and effective treatments.


Sign in / Sign up

Export Citation Format

Share Document