scholarly journals Impact of Galectin-Receptor Interactions on Liver Pathology During the Erythrocytic Stage of Plasmodium berghei Malaria

2021 ◽  
Vol 12 ◽  
Author(s):  
Yifan Wu ◽  
Shiguang Huang ◽  
Siyu Xiao ◽  
Jian He ◽  
Fangli Lu

Hepatopathy is frequently observed in patients with severe malaria but its pathogenesis remains unclear. Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses, and exhibit pivotal roles during Plasmodium spp. infection. Here, we analyzed the impact of blockage of galectin-receptor interactions by treatment with alpha (α)-lactose on liver immunopathology during the erythrocytic stage of malaria in mice infected with Plasmodium berghei ANKA (PbANKA). Our results found that compared with PbANKA-infected mice (malarial mice), blockage of galectin-receptor interactions led to decreased host survival rate and increased peripheral blood parasitemia; exacerbated liver pathology, increased numbers of CD68+ macrophages and apoptotic cells, and increased parasite burden in the livers on days 5 and 7 post infection (p.i.) as well as increased mRNA expression levels of galectin-9 (Gal-9) and its receptor, the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3), interferon (IFN)α, IFNγ, and the triggering receptor expressed on myeloid cells (TREM)-1 in the livers or spleens of PbANKA-infected mice on day 7 p.i. Observed by transmission electron microscopy, the peritoneal macrophages isolated from malarial mice with α-lactose treatment had more pseudopodia than those from malarial mice. Measured by using quantitative real-time reverse transcription-polymerase chain reaction assay, the mRNA expression levels of Gal-9, IFNα, IFNβ, IFNγ, and TREM-1 were increased in the peritoneal macrophages isolated from malarial mice with α-lactose treatment in comparison of those from malarial mice. Furthermore, significant positive correlations existed between the mRNA levels of Gal-9 and Tim-3/IFNγ/TREM-1 in both the livers and the peritoneal macrophages, and between Gal-9 and Tim-3/TREM-1 in the spleens of malarial mice; significant positive correlations existed between the mRNA levels of Gal-9 and IFNγ in the livers and between Gal-9 and IFNα in the peritoneal macrophages from malarial mice treated with α-lactose. Our data suggest a potential role of galectin-receptor interactions in limiting liver inflammatory response and parasite proliferation by down-regulating the expressions of IFNα, IFNγ, and TREM-1 during PbANKA infection.

2019 ◽  
Vol 20 (13) ◽  
pp. 3257 ◽  
Author(s):  
Sophie Gravel ◽  
Benoit Panzini ◽  
Francois Belanger ◽  
Jacques Turgeon ◽  
Veronique Michaud

To characterize effects of type 2 diabetes (T2D) on mRNA expression levels for 10 Cytochromes P450 (CYP450s), two carboxylesterases, and three drug transporters (ABCB1, ABCG2, SLCO2B1) in human duodenal biopsies. To compare drug metabolizing enzyme activities of four CYP450 isoenzymes in duodenal biopsies from patients with or without T2D. mRNA levels were quantified (RT-qPCR) in human duodenal biopsies obtained from patients with (n = 20) or without (n = 16) T2D undergoing a scheduled gastro-intestinal endoscopy. CYP450 activities were determined following incubation of biopsy homogenates with probe substrates for CYP2B6 (bupropion), CYP2C9 (tolbutamide), CYP2J2 (ebastine), and CYP3A4/5 (midazolam). Covariables related to inflammation, T2D, demographic, and genetics were investigated. T2D had no major effects on mRNA levels of all enzymes and transporters assessed. Formation rates of metabolites (pmoles mg protein−1 min−1) determined by LC-MS/MS for CYP2C9 (0.48 ± 0.26 vs. 0.41 ± 0.12), CYP2J2 (2.16 ± 1.70 vs. 1.69 ± 0.93), and CYP3A (5.25 ± 3.72 vs. 5.02 ± 4.76) were not different between biopsies obtained from individuals with or without T2D (p > 0.05). No CYP2B6 specific activity was measured. TNF-α levels were higher in T2D patients but did not correlate with any changes in mRNA expression levels for drug metabolizing enzymes or transporters in the duodenum. T2D did not modulate expression or activity of tested drug metabolizing enzymes and transporters in the human duodenum. Previously reported changes in drug oral clearances in patients with T2D could be due to a tissue-specific disease modulation occurring in the liver and/or in other parts of the intestines.


2021 ◽  
Vol 28 (5) ◽  
pp. 4080-4092
Author(s):  
Takahiro Ichikawa ◽  
Masahiro Shibata ◽  
Takahiro Inaishi ◽  
Ikumi Soeda ◽  
Mitsuro Kanda ◽  
...  

Background: Accumulating evidence indicates tumor-promoting roles of synaptotagmin 13 (SYT13) in several cancers; however, no studies have investigated its expression in breast cancer (BC). This study aimed to clarify the significance of SYT13 in BC. Methods: SYT13 mRNA expression levels were evaluated in BC cell lines. Polymerase chain reaction (PCR) array analysis was conducted to determine the correlation between expression levels of SYT13 and other tumor-associated genes. Then, the association of SYT13 expression levels in the clinical BC specimens with patients’ clinicopathological factors was evaluated. These findings were subsequently validated using The Cancer Genome Atlas (TCGA) database. Results: Among 13 BC cell lines, estrogen receptor (ER)-positive cells showed higher SYT13 mRNA levels than ER-negative cells. PCR array analysis revealed positive correlations between SYT13 and several oncogenes predominantly expressed in ER-positive BC, such as estrogen receptor 1, AKT serine/threonine kinase 1, and cyclin-dependent kinases 4. In 165 patients, ER-positive specimens exhibited higher SYT13 mRNA expression levels than ER-negative specimens. The TCGA database analysis confirmed that patients with ER-positive BC expressed higher SYT13 levels than ER-negative patients. Conclusion: This study suggests that SYT13 is highly expressed in ER-positive BC cells and clinical specimens, and there is a positive association of SYT13 with the ER signaling pathways.


2020 ◽  
Vol 12 ◽  
pp. 175883592091756
Author(s):  
Jing-Hua Yang ◽  
Ming-Zhe Wu ◽  
Xu-Bo Wang ◽  
Shiyu Wang ◽  
Xue-Shan Qiu ◽  
...  

Background: There is an immediate need for research on the mechanism underlying telomerase activation and overexpression. Materials & Methods: A total of 174 patients with lung cancer ( n = 106) and benign lung disease ( n = 68) were recruited for the current study. The mRNA expression levels of E6, E7, LKB1, Sp1, and hTERC in brushing cells were detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), and hTERC amplification was also detected by fluorescence in situ hybridization (FISH). To investigate the potential mechanism, bidirectional genetic manipulation was performed in well-established lung cancer cell lines. Results: Our results indicated that the mRNA expression levels of E6, E7, Sp1, and hTERC and the amplification level of hTERC were significantly increased in the malignant group compared with those of the benign group ( p < 0.01). Conversely, the mRNA expression level of LKB1 was significantly decreased in the malignant group ( p < 0.01). The correlation between E6, E7, Sp1, and hTERC expression was positive but was negative with LKB1 ( p < 0.01). Our results also showed that HPV16 E6/E7 downregulated the expression of LKB1 at both the protein and mRNA levels. The loss of LKB1 upregulated Sp1 expression, and also promoted Sp1 activity. Sp1 further upregulated hTERC at the mRNA and gene amplification levels. Thus, we proposed a HPV–LKB1–Sp1–hTERC axis of E6/E7 upregulation of hTERC expression. Conclusion: We demonstrated for the first time that E6 and E7 promoted hTERC mRNA expression and the amplification of hTERC by relieving the effect of LKB1 on the phosphorylation of Sp1. Sp1 further activated hTERC by directly binding to the promoter regions of hTERC.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Weiwei Gong ◽  
Yueyang Liu ◽  
Eleftherios P. Diamandis ◽  
Marion Kiechle ◽  
Holger Bronger ◽  
...  

Abstract Background High-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian cancer. A growing body of evidence suggests tumor-supporting roles of several members of the kallikrein-related peptidase (KLK) family, including KLK5 and KLK7, in this cancer subtype. In normal physiology, KLK5 and KLK7 are the major proteases involved in skin desquamation. Moreover, in several cancer types KLK5 and KLK7 co-expression has been observed. Recently, we have shown that elevated KLK5 mRNA levels are associated with an unfavorable prognosis in HGSOC. Therefore, the aim of this study was to investigate the clinical significance of KLK7 mRNA expression and to explore its relation to KLK5 levels in HGSOC. Methods mRNA expression levels of KLK7 were quantified by qPCR in a well-characterized patient cohort afflicted with advanced high-grade serous ovarian cancer (FIGO III/IV, n = 139). Previously determined KLK5 mRNA as well as KLK5 and KLK7 antigen concentrations were used to evaluate the relationship between the expression patterns of both factors on the mRNA as well as protein level in tumor tissue of HGSOC patients. Results There were strong, significant positive correlations between KLK5 and KLK7 both at the mRNA and the protein level, suggesting coordinate expression of these proteases in HGSOC. In univariate analyses, elevated KLK7 levels as well as the combination of KLK5 + KLK7 (high and/or high versus low/low) were significantly associated with worse progression-free survival (PFS). High mRNA expression levels of KLK7 and the combination of KLK5 and KLK7 showed a trend towards significance for overall survival (OS). In multivariate analyses, KLK7 mRNA expression represented an unfavorable, statistically significant independent predictor for PFS and OS. Conclusions The findings imply that both increased KLK5 and KLK7 mRNA expression levels represent unfavorable prognostic biomarkers in advanced high-grade serous ovarian cancer, whereby multivariate analyses indicate that KLK7 mRNA exhibits a stronger predictive value as compared to KLK5 mRNA and the combination of KLK5 and KLK7.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3481-3481
Author(s):  
Ajay Abraham ◽  
Savitha Varatharajan ◽  
Ashok kumar Jayavelu ◽  
Shaji R Velayudhan ◽  
Rayaz Ahmed ◽  
...  

Abstract Abstract 3481 Wide inter-individual variation in terms of treatment outcome and toxic side effects of treatment exist among patients with AML receiving chemotherapy with cytarabine (ara-C) and daunorubicin. The pre-requisite for the cytotoxic action of pro-drug Ara-C is the enzymatic conversion to its active tri-phosphorylated form ara-CTP. Many drug activating (Deoxycytidine kinase (dCK) and human Equilibrative Nucleoside Transporter 1 (hENT1) and deactivating (Cytidine deaminase (CDA), 5'nucleotidase (NT5C2) genes and ribonucleoside reductase (RRM1), which are involved in transport and biotransformation of cytarabine contribute to the variation in ara-C sensitivity in AML patients. FLT3-ITD and NPM1 mutations act as major poor and good prognostic markers respectively in cytogenetically normal AML. The effect of these mutations in ara-C metabolism remains to be elucidated. The present study aims to determine independent as well as the combined effect of ara-C metabolizing genes mRNA expression on in-vitro ara-C cytotoxicity and the role of FLT3-ITD and NPM mutations on mRNA expression of these genes. Diagnostic bone marrow sample (median blasts 65%; range 21 – 98%) from 98 adult patients with de novo AML (other than AML-M3) were included in this study. mRNA expression levels for each target gene relative to housekeeping gene GAPDH was analyzed using Taqman based gene expression assays. In vitro cytotoxicity was assessed using MTT cell viability assay and IC-50 was calculated. In vitro sensitivity or resistance was classified on the basis of the IC-50 values <6uM and >6uM ara-C respectively. FLT3 ITD and NPM mutation status at diagnosis were determined through PCR followed by Genescan analysis using genomic DNA samples. Type of NPM mutation was identified by sequencing. When ara-C IC-50 values were compared with the mRNA expression levels of these candidate genes, Ara-C sensitive samples (n= 30; IC-50 < 6uM) showed significantly higher mRNA expression of dCK and hENT1 compared to those with Ara-C resistance (n=51) IC50 >6uM (median 314 (61.56 – 1232) vs. 180 (31.87 – 749.2); p = 0.0004 and median 172.1 (44.12 – 657.6) vs. 96.19 (37.49 – 432.4), p= 0.0008 respectively. RRM1 and NT5C2 did not show any association with in vitro Ara-C cytotoxicity, while CDA showed a trend towards association with lower CDA expression in ara-C sensitive samples. Based on these findings we put forward Ara-C resistance index (RI). RI is calculated by the formula RI = ΔCT (dCK X ENT1)/ ΔCT CDA. (Smaller ΔCT value= higher mRNA expression). RI values were significantly higher in resistant (IC50 >6uM) compared to sensitive cells (median: 6.084; range 1.89–11.82) vs. 3.702 (1.89–9.80); p=<0.0001). This association should now be validated in an independent cohort. Effects of NPM and FLT3 mutation status on Ara-C metabolizing genes were then evaluated. No significant association was found between FLT3-ITD status and the mRNA expression of these candidate genes. Interestingly, dCK mRNA levels were significantly higher in samples with NPM mutation (n=39) compared to NPM wild type (n=59); median 272.3 (41.64–1232) vs. 188.6 (31.87–1030); p value= 0.01. When analysed separately, patients with NPM type A mutation (n=27) showed significantly higher dCK expression (median 347.4 (41.64–1232) vs. 188.6 (31.87–1030); p value= 0.003 compared to those with wild type NPM1. This first report showing an association between expression profiles of ara-C metabolizing genes and NPM mutation should form the basis for evaluating their clinical correlations. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (4_suppl) ◽  
pp. 383-383
Author(s):  
Martin K. H. Maus ◽  
Craig Stephens ◽  
Stephanie H. Astrow ◽  
Peter Philipp Grimminger ◽  
Dongyun Yang ◽  
...  

383 Background: Gene expression levels of ERCC1, TS, EGFR and VEGFR2 may have predictive value for the personalized use of standard chemotherapeutics as well as agents targeting the EGFR and VEGF pathways and the efficacy of EGFR directed monoclonal antibodies like panitumumab and cetuximab has been confirmed to be dependent on wt KRAS and wt BRAF in patients with advanced colorectal cancer. We investigated the correlations between KRAS/BRAF mutational status and the mRNA expression levels of these genes. Methods: Formalin-fixed paraffin-embedded tumor specimens from 600 patients with advanced colorectal adenocarcinoma were microdissected and DNA and RNA was extracted. Specifically designed primers and probes were used to detect 7 different base substitutions in codon 12 and 13 of KRAS, V600E mutations in BRAF and the expression levels of ERCC1, TS, EGFR and VEGFR2 by RT-PCR. Results: Mt KRAS tumors had significantly lower TS and EGFR gene expression levels compared with wt KRAS (p<0,001), whereas mt BRAF tumors showed significantly increased TS and EGFR mRNA levels compared to wt BRAF (p<0,001). Mt BRAF tumors showed significantly higher mRNA levels than mt KRAS tumors (p<0,001). ERCC1 and VEGFR2 mRNA levels were significantly down-regulated in mt KRAS specimen (p<0,001), but showed no significant correlation with BRAF mutational status. Conclusions: KRAS and BRAF mutations are associated with opposite mRNA expression levels for TS and EGFR. Recently, resistance to BRAF inhibition in mt BRAF colorectal tumors has been shown in preclinical models to be associated with up-regulation of EGFR. Our data suggests that BRAF mutants are associated with high EGFR levels at the time of diagnosis, and not necessarily part of an acquired mechanism of resistance. Significantly lower mRNA expression levels of VEGFR2 in mt KRAS tumors may explain lower response to angiogenesis inhibition seen in the TML study.


2017 ◽  
Vol 118 (11) ◽  
pp. 881-888 ◽  
Author(s):  
Lin Lu ◽  
Meiling Wang ◽  
Xiudong Liao ◽  
Liyang Zhang ◽  
Xugang Luo

AbstractTwo experiments were designed to investigate the effects of Mn source and concentration on the mRNA expression and enzymatic activities of fatty acid synthase (FAS) and malic enzyme (ME) in cultured primary broiler hepatocytes. In Expt 1, primary broiler hepatocytes were treated with 0 (control), 0·25, 0·50 or 0·75 mmol/l of Mn as inorganic manganese chloride (MnCl2.4H2O) for 24 and 48 h. In Expt 2, primary broiler hepatocytes were incubated with 0 (control), 0·25 or 0·50 mmol/l of Mn as either manganese chloride or Mn–amino acid chelate for 48 h. The mRNA levels and activities of FAS and ME in the hepatocytes were measured in Expts 1 and 2. The results in Expt 1 showed that only at 48 h mRNA expression levels of FAS and ME in the hepatocytes decreased linearly (P<0·001) and quadratically (P<0·02) as supplemental Mn concentrations increased. In Expt 2, compared with the control, Mn supplementation reduced (P<0·01) the activities of FAS, mRNA expression levels of FAS and ME in the hepatocytes, and the efflux of lactic dehydrogenase to the medium. The supplemental Mn at 0·5 mmol/l showed a lower (P<0·03) ME mRNA expression level compared with the Mn group at 0·25 mmol/l. However, Mn source and the interaction between Mn source and concentration had no impacts (P>0·33) on any of the measured cellular parameters. The results suggested that Mn might reduce cell damage and regulate FAS and ME expression at a transcriptional level in primary cultured broiler hepatocytes.


2004 ◽  
Vol 24 (5) ◽  
pp. 2181-2189 ◽  
Author(s):  
Lorena Martínez-Gac ◽  
Miriam Marqués ◽  
Zaira García ◽  
Miguel R. Campanero ◽  
Ana C. Carrera

ABSTRACT Cyclin G2 is an unconventional cyclin highly expressed in postmitotic cells. Unlike classical cyclins that promote cell cycle progression, cyclin G2 blocks cell cycle entry. Here we studied the mechanisms that regulate cyclin G2 mRNA expression during the cell cycle. Analysis of synchronized NIH 3T3 cell cultures showed elevated cyclin G2 mRNA expression levels at G0, with a considerable reduction as cells enter cell cycle. Downregulation of cyclin G2 mRNA levels requires activation of phosphoinositide 3-kinase, suggesting that this enzyme controls cyclin G2 mRNA expression. Because the phosphoinositide 3-kinase pathway inhibits the FoxO family of forkhead transcription factors, we examined the involvement of these factors in the regulation of cyclin G2 expression. We show that active forms of the forkhead transcription factor FoxO3a (FKHRL1) increase cyclin G2 mRNA levels. Cyclin G2 has forkhead consensus motifs in its promoter, which are transactivated by constitutive active FoxO3a forms. Finally, interference with forkhead-mediated transcription by overexpression of an inactive form decreases cyclin G2 mRNA expression levels. These results show that FoxO genes regulate cyclin G2 expression, illustrating a new role for phosphoinositide 3-kinase and FoxO transcription factors in the control of cell cycle entry.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e15071-e15071
Author(s):  
H. Kuramochi ◽  
K. Hayashi ◽  
G. Nakajima ◽  
H. Kamikozuru ◽  
M. Yamamoto

e15071 Background: Oxaliplatin has been widely used for the treatment of colorectal cancer. The mechanism of action of platinum compounds such as oxaliplatin is to bind to a DNA molecule in the form of a platinum-DNA-adduct. Excision repair cross complementation group 1 (ERCC1), which plays a major role in the nucleotide excision pathway, has a polymorphism in codon 118, and is reported to be associated with a resistance to platinum-based therapy. Thymidylate synthase (TS) and dehydropyrimidine dehydrogenase (DPD) are key enzymes of 5-FU metabolism and are well known to be associated with a response to 5-FU-based therapy. Methods: Twenty-one colorectal cancer patients (male:female = 7:14; median age, 65) treated with a combination of oxaliplatin and S-1 as a first-line therapy were analyzed for ERCC1 codon 118 polymorphism and the mRNA expression levels of TS, ERCC1, and DPD. Formalin-fixed paraffin- embedded surgical specimens were used and t-RNA and DNA were extracted. The mRNA expression levels were measured using real-time RT-PCR, and the polymorphism was analyzed using the allelic discrimination method together with real-time PCR. Results: No correlation was observed between ERCC1 codon118 polymorphism and any response to the chemotherapy. ERCC1 mRNA levels tended to be higher in the patients with wild-type homozygous alleles in codon 118 than in those with at least one mutant allele(1.19 vs.0.68: p= 0.15). Patients with both high TS and ERCC1 mRNA levels showed a significantly lower response rate than the others (25% vs. 67%, p=0.02). No relationship was seen between DPD mRNA expression levels and the response. Conclusions: The mRNA expression levels of TS and ERCC1 appear to be useful markers for the treatment of S-1 and oxaliplatin. No particular usefulness of ERCC1 codon 118 polymorphism was verified. No significant financial relationships to disclose.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4878-4878
Author(s):  
Marketa Zackova ◽  
Tereza Lopotova ◽  
Sylvie Nadvornikova ◽  
Hana Klamova ◽  
Jana Moravcova

Abstract Abstract 4878 Chronic myeloid leukemia (CML) is the myeloproliferative disease characterised by presence of BCR-ABL tyrosine kinase, which has been proved to play the basic role in CML ontogenesis. BCR-ABL as well as other kinases active during disease progression (e.g. Src kinase) belong to HSP90 client proteins. It is known, that HSP90 protein is overexpressed in cancer cells and leukemias and is related to therapy resistance in CML cells (Gorre et.al. Blood 2002;100:3041-3044). HSP90 exists in two isoforms: alpha - inducible and beta – constitutively expressed. Taherian et.al. (Biochemistry and Cell Biology, 2008, 86:(1) 37–45) demonstrated that Hsp90α and Hsp90β exhibit similar interactions with cochaperones, but significantly different substrate specificity under stress conditions. Those results reveal both functional similarities and key functional differences between the individual members of this protein family. In our previous study we found high protein expression of total HSP90 in leukocytes of CML patients in advanced disease states and in patients with poor responses (Zackova et.al. EHA 2011). The HSP90 seems to be an indicator of disease deterioration in patients with chronic myeloid leukemia. In the current study, we extended our field of interest on HSP90 isoforms alpha and beta on mRNA level. We aimed to find out possible correlation between protein and mRNA expression levels, as well as between mRNA levels and response to the therapy. We wondered to know whether the monitoring of total HSP90 or its isoforms in CML can early predict the disease deterioration. We tested HSP90 alpha and HSP90 beta mRNA expression levels in patients with various response of CML by real-time RT-PCR method. The mRNA profiles showed high similarity with the data obtained from previous western blot analyses. The analyses showed that high HSP90 levels are associated with poor response to therapy and in advanced disease phases. These levels are probably represented by HSP90-beta isoform (constitutively expressed), which is expressed in higher levels comparing to HSP90 alpha in all samples tested. Expression of HSP90 alpha isoform is much lower while its mRNA expression level highly increases only in blast crisis. Studying both isoformes separately could distinguish various mechanisms in disease progression. The results of this and previous studies suggest HSP90 (on protein and mRNA levels) is an important molecule for studying of prognosis in CML patients. Thus HSP90 appears to be a candidate for novel marker of CML progression. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document