scholarly journals EVALUATION OF FIRE-PROTECTIVE ABILITY OF NEWLY CREATED FIRE-PROTECTIVE COATINGS OF STEEL STRUCTURES

Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
O. Vasylyev ◽  
...  

Abstract. The results of the development of fire-retardant substances based on domestic materials to increase the fire resistance of fire-retardant steel structures are presented. New compositions of fire-retardant substances on the basis of domestic materials capable of swelling are developed. A series of experimental studies to determine the heating temperature of fire-resistant steel structures. For this purpose, samples of reduced size in the form of a steel plate with a flame retardant applied to the heating surface were used. Fire tests of fire-retardant steel plates coated with the developed fire-retardant substance forming a coating on the protected surface, in the conditions of their tests on the standard temperature of the fire using the installation to determine the fire-retardant ability of fire-retardant coatings. The results of experimental determination of temperature from an unheated surface of steel plates with a fire-retardant covering in the conditions of fire influence at a standard temperature mode of a fire are analyzed. Based on the obtained data (temperature in the furnace and from the unheated surface of steel plates with fire protection system) the solution of the inverse problems of thermal conductivity found thermophysical characteristics of fire protection coating (thermal conductivity and specific volume), which can be used for thermal calculation heating of fire-retardant steel structures at arbitrary fire temperatures. The thermophysical characteristics of the formed fire-retardant coating are substantiated to find the characteristics of the fire-retardant ability of the newly created fire-retardant coating and to ensure the fire resistance of fire-retardant steel structures. The efficiency of the developed fire-retardant coating for protection of steel structures is proved.

2020 ◽  
pp. 43-54
Author(s):  
Владимир Ильич Голованов ◽  
Андрей Владимирович Пехотиков ◽  
Владимир Валерьевич Павлов

Представлены результаты анализа экспериментальной и аналитической оценки огнезащитной эффективности покрытий для стальных конструкций. Обобщены данные многолетних исследований по определению зависимостей от температуры таких теплофизических характеристик, как теплопроводность и теплоемкость. Разработана структурно-методологическая схема выбора огнезащитных покрытий для стальных конструкций в целях обеспечения нормативных требований по огнестойкости. Проведены экспериментальные исследования по определению огнезащитной эффективности терморасширяющихся покрытий на эпоксидной основе при воздействии температурного режима горения углеводородов. Рассмотрен вопрос о гармонизации методики экспериментальной оценки огнезащитной эффективности средств огнезащиты для стальных конструкций с действующими европейскими нормами. Установлены критерии выбора пассивной огнезащиты, зависящие от области применения способов огнезащиты. Steel structures have high strength, relative lightness and durability, but when exposed to high temperatures in a fire, they deform, lose stability and load-bearing capacity. The collapse of load-bearing steel structures can occur in 10-15 minutes after the fire start. The actual fire resistance limit of structures can be increased by using the active and passive fire protection systems. The use of the active system for increasing the actual fire resistance limit is not provided in the regulatory documents. Passive fire protection is a complex of technical solutions including the use of non-flammable materials and bulging compounds. It is also an integral part of the building structure that ensures the required fire resistance limit. Assessment of fire resistance of building structures of residential, public, warehouse and industrial buildings is carried out taking into account the temperature regime (cellulose) of a standard fire. At oil and gas, petrochemical enterprises as well as at oil production platforms fires can occur at combustion of various hydrocarbon fuels which are characterized by a rapid temperature increase to 1100 °C. In this case, in accordance with GOST R EN 1363-2-2014, the temperature regime of hydrocarbon combustion is used to assess the fire resistance of building structures. The fire-retardant effectiveness of fire protection means for steel structures is determined by the heating time of the standard I-shaped column without applying a static load on the sample to the average “critical” temperature of the steel of 500 °C. Materials used for fire protection of steel structures must have a good thermal insulation ability, which is estimated by the coefficient of thermal conductivity. When heated to high temperatures, the thermal conductivity coefficient of fire-resistant materials varies depending on their composition and temperature. Based on the analysis of research to determine the fire-retardant effectiveness of fire protection means for steel structures there was developed a structural and methodological scheme that allows to make a choice of fire protection. Currently, as a fire protection there are widely used intumescent paints and thermo-expandable coatings. Taking into account the lack of knowledge of the influence of long-term operation and a large number of other technological factors on the fire-retardant effectiveness of coatings of steel structures covered with intumescent paints, it would be right to limit the use of such type of fire protection for load-bearing structures contributing to the overall sustainability of buildings with a required fire resistance of R 30. For fire protection of steel structures of oil and gas facilities located in the open air, in severe climatic conditions and exposed to aggressive environments there is successfully used a thermo-expandable two-component epoxy-based coating. The analysis of experimental data showed that the use of epoxy-based coatings is suitable for metal structures in the open air. In closed rooms the epoxy intumescent coating should not be used because at high temperature in a fire it ignites with toxic combustion products release.


2012 ◽  
Vol 594-597 ◽  
pp. 849-859
Author(s):  
Man Li Ou ◽  
Wei Jun Cao ◽  
Long Min Jiang ◽  
Hui Cao

As the result of great changes occurring to mechanical properties under high temperature (fire) conditions, steel structures will soon lose the strength and stiffness and lead to structural damage. Through analysis of the steel structure fire resistance design methods under the conditions of high temperature (fire), this article explores the most used fire protection methods in steel structures—brushing or painting fire-resistant coatings, studies the fire-resistance theory of steel structure under fire conditions; in addition, the author proposes the reasonable thickness of the steel structure fire retardant coating of fire-resistant design through design examples.


Author(s):  
V.I. Golovanov ◽  
◽  
A.V. Pekhotikov ◽  
V.V. Pavlov ◽  
◽  
...  

Variants of progressive solutions for the use of efficient fire protection means for steel and reinforced concrete structures of the industrial buildings and structures are considered for the purpose of increasing the actual fire resistance and ensuring the requirements of fire safety norms. Distinctive features of the temperature regimes in the initial phase of a real fire from a standard fire were established when assessing the fire resistance of building structures. It is proposed to use such standardized temperature regimes of fire for assessing the fire resistance of building structures, as standard — in the industrial buildings; temperature regime of hydrocarbons combustion — for oil and gas, petrochemical enterprises, offshore stationary platforms; tunnel temperature regime — in the road and railway tunnels. Considering the operating conditions and performance of work on fire protection, the degree of aggressiveness of the environment, the structural and methodological scheme was developed for selecting passive fire protection for steel structures. Recommendations are given on limiting the use of intumescent paints for load-bearing steel structures involved in the overall stability of buildings, with the required fire resistance limit of no more than 30 minutes. To calculate the temperature over the section of the structure during its heating, the dependences of the change in the coefficients of thermal conductivity and heat capacity of fire-retardant linings under fire were obtained. Experimental studies were conducted related to the fire resistance of reinforced concrete floor slabs and slabs with an external reinforcement system based on the carbon composite material with various types of fire-retardant materials. The issue of protecting the lining blocks of road and railway tunnels from brittle (explosive) destruction of concrete in a fire is considered. It is experimentally confirmed that the addition of polypropylene fibers to the concrete mixture replaces the use of fire protection for the tunnels enclosing structures.


Author(s):  
Andrii Kovalov ◽  
◽  
Yurii Otrosh ◽  
Vitalii Tomenko ◽  
Andrii Kondratiev ◽  
...  

Purpose. Evaluation of fire resistance of fire-resistant steel structures using the developed calculation and experimental method. Methods. Finite difference method, landfill fire test method, mathematical and computer modeling of non-stationary heat exchange processes, determination of thermophysical characteristics of fire-retardant coatings based on solving direct and inverse thermal conductivity problems. Results. Geometric, physical, computer models have been developed, with the help of which the fire resistance of fire-resistant steel structures has been evaluated by the calculation-experimental method. The adequacy of the developed method for assessing the fire resistance of fire-resistant steel structures in assessing the fire resistance of fire-resistant I-beam steel column has been checked. The analysis of tests on fire resistance of fire-resistant steel columns exposed to fire at the standard temperature of the fire without the load applied to them has been carried out. A computer model of the “steel column – reactive flame retardant coating” system has been built for numerical simulation of non-stationary heating of such a system. The fire resistance of fire-resistant steel columns of I-beam section without load applied to them has been evaluated using the calculation-experimental method. Verification of results of experimental research with results of numerical modeling has been carried out. Scientific novelty. The convergence of the results of experimental data on the duration of fire exposure at the standard temperature of the fire to reach the critical temperature of steel with the results of numerical simulations has been determined. Based on the comparison of the experimental results and numerical modeling, the adequacy of the developed model to the real processes that occur when heating fire-retardant steel columns without applying a load under fire conditions at a standard fire temperature has been confirmed. The efficiency of the proposed calculation and experimental method for assessing the fire resistance of fire-resistant steel structures has been confirmed. Practical significance. It consists in the implementation of the results on objects of different purposes in assessing the fire resistance of fire-resistant steel structures by evaluating the effectiveness of fire-retardant coatings of steel building structures.


Author(s):  
Véronique Saulnier ◽  
Sébastien Durif ◽  
Abdelhamid Bouchaïr ◽  
Philippe Audebert ◽  
Mohamed Lahmar

<p>Preliminary fire experimental tests have been carried out on steel plates protected with intumescent coating.</p><p>The tests evaluated and measured the heating of steel plates with various geometrical configurations: shape, size. A first test on an equal leg angle section showed interesting results with different coating expansion on the faces of the section.</p>The second test campaign is done with different protections to compare behaviors of four steel plates. The first objective is to set up an experimental protocol for future tests. Those results are used to evaluate analytical prevision of steel plate temperature with and without fire protection.


2020 ◽  
pp. 116-126
Author(s):  
S.V. Pozdieiev ◽  
◽  
O.M. Nuianzin ◽  
S.O. Sidnei ◽  
A.Y. Novhorodchenko ◽  
...  

In the article, experimental fire tests on establishing maximum fire resistance of the steel columns with fire-retardant mineral wool covering are analyzed. The scientific novelty of this study are the new method developed for manufacturing and shaping samples of the steel columns with fire-retardant mineral wool covering, and the method developed for conducting fire tests on establishing patterns of dependence of the moment when steel columns with the fire-retardant cladding lose their bearing capacity down to the limit. The subject of the study was an influence of design parameters of the fire-retardant cladding on the results of the estimated fire resistance of the steel columns under the influence of the standard fire temperature mode. The main task of the research described in this article was to determine a moment of the peak critical temperature of fire-retardant steel structure depending on the thickness of the mineral wool covering. The test results of samples of steel columns with different thickness of fire-retardant cladding based on mineral wool covering are also described in the article; the tests were carried out in accordance with the developed methodology of experimental studies. The repeatability of the time indicators of the bearing capacity loss by the tested samples of steel columns with fire-retardant cladding depending on the duration of the sample exposure to the action of the fire standard temperature is shown. The obtained research results will allow to create a mathematical model for predicting a dependence of the moment when a steel structure reaches its critical temperature depending on the thickness of the fire-retardant cladding. The constructed mathematical model can be considered as a scientific basis for the creation of new engineering methods of calculation for assessing fire resistance of the steel structures with fire-retardant mineral wool covering. These engineering and calculation methods allow improving the regulatory acts for designing of the fire-resistant steel structures.


2021 ◽  
Vol 3 (2) ◽  
pp. 29-39
Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
V. Slovinskyi ◽  
...  

Based on the developed geometric, physical, computer and finite element model, the fire resistance of fire-resistant steel structures was evaluated by calculation and experimental method. The adequacy of the developed computational-experimental method for assessing the fire resistance of fire-resistant steel structures in assessing the fire resistance of a fire-resistant I-beam steel column was verified. The results of tests for fire resistance of steel columns with fire-retardant coating at standard temperature of the fire without the load applied to them (temperature in the furnace, temperature in certain places on the surface of fire-retardant steel columns, the behavior of the investigated fire-retardant coating). The analysis of tests on fire resistance of fire-resistant steel columns exposed to fire at standard temperature (temperature in the furnace, temperature in places of measurement of temperature on a surface of columns, behavior of a fire-retardant covering) is carried out. A computer model of the «steel column – reactive flame retardant coating» system has been built for numerical simulation of non-stationary heating of such a system. Simulation of non-stationary heating of the system «steel column – fire-retardant coating» in the software package FRIEND with the specified parameters (geometric model, thermal effects, initial and boundary conditions, properties of system materials). The reliability of the results of numerical modeling with real experimental data on the duration of fire exposure at the standard temperature of the fire to reach the critical temperature of steel. Based on the comparison of experimental results and numerical simulations, a conclusion is made about the adequacy of the developed model to the real processes that occur when heating fire-retardant steel columns without applying a load under fire conditions at standard fire temperature. The efficiency of the proposed calculation and experimental method for assessing the fire resistance of fire-resistant steel structures has been confirmed.


2020 ◽  
Vol 11 (3) ◽  
Author(s):  
V. V. Lomaha ◽  
O. Yu. Tsapko ◽  
Yu. V. Tsapko ◽  
O. P. Bondarenko

Reducing the fire prevention of timber is not only an economic task, but also has a social and environmental focus. From economic, technological and environmental perspective, an important problem in ensuring the viability and safe operation of construction sites is the development of fire-retardant coatings for wooden structures. The construction is increasingly looking for new highly effective means of fire protection of wood and wood products which should not only ensure the standardized fire resistance of wood, but also to maintain its operational parameters to solve environmental safety and durability. Studies of the effect of the radiation panel on the ignition of the wood sample have set the parameters of the flame ignition, which makes it possible to influence this process. It is proved that they consist in the formation of a layer of organic material on the surface, which provides heating to a critical temperature, when the intensive decomposition of the material begins with the release of the required amount of combustible gases and their ignition. This makes it possible to determine the effect of fire protection and the properties of protective compositions on the process of slowing down the rate of burning of wood. Experimental studies have confirmed that the untreated sample of wood, under the thermal action of the radiation panel has taken up, the flames spread over the entire surface, which led to its combustion. The application of a fire retardant varnish under the influence of temperature leads to a layer of foam coke and inhibition of heat transfer of high-temperature flame to the material and its ignition. Thanks to this, it became possible to determine the conditions for changing the parameters of combustion and braking during fire protection of wood, by forming a barrier for thermal conductivity. Thus, there is reason to argue for the possibility of directional control of the processes of fire protection of wood by the use of fireproof coatings that can form a protective layer on the surface of the material, which slows down the rate of burning of wood.


Author(s):  
Lyubov Vakhitova ◽  
◽  
Nadiya Taran ◽  
Konstantin Kalafat ◽  
◽  
...  

Purpose. Identification of the main directions of evolution of scientific researches concerning development and improvement of fire protective reactive coatings of intumescent type for steel constructions. Methods. Analysis of literature sources, study and generalization of information, classification and modeling of chemical processes. Results. As a result of the performed researches it has been shown that of all the developed reactive fire protection systems for increasing the fire resistance of steel structures the intumescent composition of ammonium polyphosphate/ pentaerythritol / melamine / polymer is the most widespread and economically justified. To reduce the cost of fire protection measures, it is necessary to improve the coatings of the intumescent type in the following main areas: increasing of fire protection efficiency with a decrease in the thickness of the fire protection layer; prolongation of life time with strengthening of resistance to external factors; reducing the cost of the prescription composition of intumescent paint due to the use of nanomaterials. Scientific novelty. It has been established that nanoclays, nanooxides of metals and silicon, LDH compounds and their analogues should be considered the most promising and multifunctional. The presence of nanomaterials in intumescent compositions allows to increase the environmental parameters of fire-retardant treatment due to the rejection of halogen flame retardants, boron compounds, formaldehyde resins. In addition, the presence of nanocompounds in intumescent coatings significantly reduces smoke in fire. Practical significance. The conclusions obtained from the literature review are of practical importance for the development of new approaches to the design of fire-fighting materials with improved performance through the use of nanomaterials, which provides a strong fire retardant foam char layer and provides rigidity of the insulation frame.


Author(s):  
Yury Shebeko ◽  
Aleksey Shebeko ◽  
Andrey Zuban

Проанализирована взаимосвязь разброса значений пределов огнестойкости стальных конструкций со вспучивающимися огнезащитными покрытиями и соответствующего этому разбросу интервала толщины огнезащитного покрытия. Предложена методика, на основании которой может быть осуществлен выбор необходимой толщины огнезащитного покрытия в зависимости от заданных значений дисперсии предела огнестойкости и приведенной толщины конструкции при заданной доверительной вероятности.An analysis of a relationship between fire resistance limits scatter for steel structures coated with intumescent fire retardant coating and an appropriate interval of thicknesses of the coating was carried out. A methodology for the determination of this relationship was proposed. This methodology was tested on a practical example. A steel structure with a reduced thickness of 6 mm was considered. A typical dependence of the required thickness of the structure was taken into account. A ratio of a mean square deviation of the fire resistance limit to this limit was accepted to be equal 0.1. Using these values an appropriated interval of the thicknesses of the intumescent fire retardant coating was determined. This interval can be calculated for any given confidence level. Boundaries of this interval can be not symmetric in relation to the value of the normative thickness of the fire retardant coating. The proposed methodology can be used for the determination of the required thicknesses of the intumescent fire retardant coatings on steel structures for the given r value, reduced thickness of the structure and the confidence level.


Sign in / Sign up

Export Citation Format

Share Document