VORTEX TRACKING OF PURGE-MAINSTREAM INTERACTIONS IN A ROTATING TURBINE STAGE

2021 ◽  
pp. 1-22
Author(s):  
Alex Mesny ◽  
Mark Glozier ◽  
Oliver J Pountney ◽  
James Scobie ◽  
Yansheng Li ◽  
...  

Abstract The use of purge flow in gas turbines allows for high turbine entry temperatures, which are essential to produce high cycle efficiency. Purge air is bled from the compressor and reintroduced in the turbine to cool vulnerable components. Wheel-spaces are formed between adjacent rotating and stationary discs, with purge air supplied at low radius before exiting into the mainstream gas-path through a rim-seal at the disc periphery. An aerodynamic penalty is incurred as the purge flow egress interacts with the mainstream. This study presents unparalleled three-dimensional velocity data from a single-stage turbine test rig, specifically designed to investigate egressmainstream interaction using optical measurement techniques. Volumetric Velocimetry is applied to the rotating environment with phase-locked measurements used to identify and track the vortical secondary flow features through the blade passage. A baseline case without purge flow is compared to experiments with a 1.7% purge mass fraction; the latter was chosen to ensure a fully sealed wheel-space. A non-localised vortex tracking function is applied to the data to identify the position of the core centroids. The strength of the secondary-flow vortices was determined by using a circulation criterion on rotated planes aligned to the vortex filaments........[abridged]

2021 ◽  
Author(s):  
Alex W. Mesny ◽  
Mark A. Glozier ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Yan Sheng Li ◽  
...  

Abstract The use of purge flow in gas turbines allows for high turbine entry temperatures, which are essential to produce high cycle efficiency. Purge air is bled from the compressor and reintroduced in the turbine to cool vulnerable components. Wheel-spaces are formed between adjacent rotating and stationary discs, with purge air supplied at low radius before exiting into the mainstream gas-path through a rim-seal at the disc periphery. An aerodynamic penalty is incurred as the purge flow egress interacts with the mainstream. This study presents unparalleled three-dimensional velocity data from a single-stage turbine test rig, specifically designed to investigate egress-mainstream interaction using optical measurement techniques. Volumetric Velocimetry is applied to the rotating environment with phase-locked measurements used to identify and track the vortical secondary flow features through the blade passage. A baseline case without purge flow is compared to experiments with a 1.7% purge mass fraction; the latter was chosen to ensure a fully sealed wheel-space. A non-localised vortex tracking function is applied to the data to identify the position of the core centroids. The strength of the secondary-flow vortices was determined by using a circulation criterion on rotated planes aligned to the vortex filaments. The pressure-side leg of the horseshoe vortex and a second vortex associated with the egress flow were identified by the experimental campaign. In the absence of purge flow the two vortices merged, forming the passage vortex. With the addition of purge flow, the two cores remained independent to 40% of the blade axial chord, while also demonstrating an increased radial migration and intensification of the passage vortex. The egress core was shown to remain closer to the suction-surface with purge flow. Importantly, where the vortex filaments demonstrated strong radial or tangential components of velocity, the circulation level calculated from axial planes underpredicted the true circulation by up to 50%.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
K. Hiroma ◽  
M. Tsutsumi ◽  
Y. Hirano ◽  
...  

In the present work, unsteady RANS simulations were performed to clarify several interesting features of the unsteady three-dimensional flow field in a turbine stage. The unsteady effect was investigated for two cases of axial spacing between stator and rotor, i.e. large and small axial spacing. Simulation results showed that the stator wake was convected from pressure side to suction side in the rotor. As a result, another secondary flow, which counter-rotated against the passage vortices, was periodically generated by the stator wake passing through the rotor passage. It was found that turbine stage efficiency with the small axial spacing was higher than that with the large axial spacing. This was because the stator wake in the small axial spacing case entered the rotor before mixing and induced the stronger counter-rotating vortices to suppress the passage vortices more effectively, while the wake in the large axial spacing case eventually promoted the growth of the secondary flow near the hub due to the migration of the wake towards the hub.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
Qingfeng Deng ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
Hai Zhang ◽  
Mingcong Luo

A three-dimensional (3D) Pressure Controlled Vortex Design (PCVD) method for turbine stage design is proposed and discussed in this paper. The concept is developed from conventional Controlled Vortex Design (CVD) via pressure control approach and CVD technology. By specifying the static pressure and axial velocity distributions, the spanwise pressure gradient incorporated with pressure gradient in streamwise and azimuthal directions is moderated. Not only can profile loss profit from pressure control approach, but also secondary flow can be managed. The reasons for CVD are derived from stream surface thickness and stream surface twist. Through modifying stream surface thickness and inducing large stream surface twist, the secondary flow migrations are controlled properly and orderly. The relations of pressure control approach and CVD technology complement one another and finally lead to a well-posed flow pattern in turbine stage. The first stage redesign of a well-designed low pressure turbine demonstrates this technique application. A significant reduction of secondary flow losses and a corresponding increase of stage efficiency have achieved.


Author(s):  
P W James

The purpose of this paper is, firstly, to show how the concept of excess secondary vorticity arises naturally from attempts to recover three-dimensional flow details lost in passage-averaging the equations governing the flow through gas turbines. An equation for the growth of excess streamwise vorticity is then derived. This equation, which allows for streamwise entropy gradients through a prescribed loss term, could be integrated numerically through a blade-row to provide the excess vorticity at the exit to a blade-row. The second part of the paper concentrates on the approximate methods of Smith (1) and Came and Marsh (2) for estimating this quantity and demonstrates their relationship to each other and to the concept of excess streamwise vorticity. Finally the relevance of the results to the design of blading for gas turbines, from the point of view of secondary flow, is discussed.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


Author(s):  
L. E. Wood ◽  
R. R. Jones ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
D. A. S. Rees ◽  
...  

Abstract The mainstream, or primary, flow in a gas turbine annulus is characteristically two-dimensional over the mid-span region of the blading, where the radial flow is almost negligible. Contrastingly, the flow in the endwall and tip regions of the blading is highly three-dimensional, characterised by boundary layer effects, secondary flow features and interaction with cooling flows. Engine designers employ geometric contouring of the endwall region in order to reduce secondary flow effects and subsequently minimise their contribution to aerodynamic loss. Such is the geometric variation of vane and blade profiles — which has become a proprietary art form — the specification of an effective endwall geometry is equally unique to each blade-row. Endwall design methods, which are often directly coupled to aerodynamic optimisers, are widely developed to assist with the generation of contoured surfaces. Most of these construction methods are limited to the blade-row under investigation, while few demonstrate the controllability required to offer a universal platform for endwall design. This paper presents a Geometry Generation Framework (GGF) for the generation of contoured endwalls. The framework employs an adaptable meshing strategy, capable of being applied to any vane or blade, and a versatile function-based approach to defining the endwall shape. The flexibility of this novel approach is demonstrated by recreating a selection of endwalls from the literature, which were selected for their wide-range of contouring approaches.


Author(s):  
Robin R. Jones ◽  
Oliver J. Pountney ◽  
Bjorn L. Cleton ◽  
Liam E. Wood ◽  
B. Deneys J. Schreiner ◽  
...  

Abstract In modern gas turbines, endwall contouring (EWC) is employed to modify the static pressure field downstream of the vanes and minimise the growth of secondary flow structures developed in the blade passage. Purge flow (or egress) from the upstream rim-seal interferes with the mainstream flow, adding to the loss generated in the rotor. Despite this, EWC is typically designed without consideration of mainstream-egress interactions. The performance gains offered by EWC can be reduced, or in the limit eliminated, when purge air is considered. In addition, EWC can result in a reduction in sealing effectiveness across the rim seal. Consequently, industry is pursuing a combined design approach that encompasses the rim-seal, seal-clearance profile and EWC on the rotor endwall. This paper presents the design of, and preliminary results from a new single-stage axial turbine facility developed to investigate the fundamental fluid dynamics of egress-mainstream flow interactions. To the authors’ knowledge this is the only test facility in the world capable of investigating the interaction effects between cavity flows, rim seals and EWC. The design of optical measurement capabilities for future studies, employing volumetric velocimetry and planar laser induced fluorescence are also presented. The fluid-dynamically scaled rig operates at benign pressures and temperatures suited to these techniques and is modular. The facility enables expedient interchange of EWC (integrated into the rotor bling), blade-fillet and rim-seals geometries. The measurements presented in this paper include: gas concentration effectiveness and swirl measurements on the stator wall and in the wheel-space core; pressure distributions around the nozzle guide vanes at three different spanwise locations; pitchwise static pressure distributions downstream of the nozzle guide vane at four axial locations on the stator platform.


Author(s):  
Carl M. Sangan ◽  
James A. Scobie ◽  
J. Michael Owen ◽  
Gary D. Lock ◽  
Kok Mun Tham ◽  
...  

In gas turbines, rim seals are fitted at the periphery of the wheel-space between the turbine disc and its adjacent casing; their purpose is to reduce the ingress of hot mainstream gases. A superposed sealant flow, bled from the compressor, is used to purge the wheel-space or at least dilute the ingress to an acceptable level. The ingress is caused by the circumferential variation of pressure in the turbine annulus radially outward of the seal. Engine designers often use double rim seals where the variation in pressure is attenuated in the outer wheel-space between the two seals. This paper describes experimental results from a research facility which models an axial turbine stage with engine-representative rim seals. The radial variation of CO2 gas concentration, swirl and pressure, in both the inner and outer wheel-space, are presented over a range of purge flow rates. The data are used to assess the performance of two seals: a datum double-rim seal and a derivative with a series of radial fins. The concept behind the finned seal is that the radial fins increase the swirl in the outer wheel-space; measurements of swirl show the captive fluid between the fins rotate with near solid body rotation. The improved attenuation of the pressure asymmetry, which governs the ingress, results in an improved performance of the inner geometry of the seal. The fins also increased the pressure in the outer wheel-space and reduced the ingress though the outer geometry of the seal.


Author(s):  
G. Paniagua ◽  
D. Cuadrado ◽  
J. Saavedra ◽  
V. Andreoli ◽  
T. Meyer ◽  
...  

Following three decades of research in short duration facilities, Purdue University has developed an alternative turbine facility in view of the modern technology in computational fluid mechanics, structural analysis, manufacturing, heating, control and electronics. The proposed turbine facility can perform both short transients and long duration tests, suited for precise heat flux, efficiency and optical measurement techniques to advance turbine aero-thermo-structural engineering. The facility has two different test sections, linear and annular, to service both fundamental and applied research. The linear test section is completely transparent for visible spectra, aimed at TRL 1 and 2. The annular test section was designed with optical access to perform proof of concepts as well as validation of turbine components at the relevant non-dimensional parameters in small engine cores, TRL 3 to 4. The large mass flow (28 kg/s) combined with a minimum hub radius to tip radius of 0.85 allows high spatial resolution. The Reynolds (Re) number extends from 60,000 to 3,000,000, based on the vane outlet flow with an axial chord of 0.06 m and a turning angle of 72 deg. The pressure ratio can be independently adjusted, allowing for testing from low subsonic to Mach 3.2. To ensure that the thermal boundary layer is fully developed the test duration can range from milliseconds to minutes. The manuscript provides a detailed description of the sequential design methodology from zero-dimensional to three-dimensional unsteady analysis as well as of the measurement techniques available in this turbine facility.


Sign in / Sign up

Export Citation Format

Share Document