Nonlinear aerodynamic characteristics and modeling of a quasi-flat plate at torsional vibration: effects of angle of attack and vibration amplitude

Author(s):  
Shengyuan Liu ◽  
Lin Zhao ◽  
Genshen Fang ◽  
Chuanxin Hu ◽  
Yaojun Ge
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mi Baigang ◽  
Yu Jingyi

The classical aerodynamic derivative model is widely used in flight dynamics, but its application is extremely limited in cases with complicated nonlinear flows, especially at high angles of attack. A modified nonlinear aerodynamic derivative model for predicting unsteady aerodynamic forces and moments at a high angle of attack is developed in this study. We first extend the higher-order terms to describe the nonlinear characteristics and then introduce three more influence parameters, the initial angle of attack, the reduced frequency, and the oscillation amplitude, to correct the constant aerodynamic derivative terms that have higher-order polynomials for these values. The improved nonlinear aerodynamic derivative model was validated by using the NACA 0015 airfoil and the F-18 model. The results show that the improved model has a higher prediction ability at high angles of attack and has the ability to predict the aerodynamic characteristics of other unknown states based on known unsteady aerodynamic data, such as the initial angle of attack, reduced frequency, and oscillation amplitude.


2020 ◽  
Vol 32 (8) ◽  
pp. 087108
Author(s):  
A. A. Abramov ◽  
A. V. Butkovskii ◽  
O. G. Buzykin

Author(s):  
Tariq Amin Khan ◽  
Wei Li ◽  
Zhengjiang Zhang ◽  
Jincai Du ◽  
Sadiq Amin Khan ◽  
...  

Heat transfer is a naturally occurring phenomenon which can be greatly enhanced by introducing longitudinal vortex generators (VGs). As the longitudinal vortices can potentially enhance heat transfer with small pressure loss penalty, VGs are widely used to enhance the heat transfer of flat-plate type heat exchangers. However, there are few researches which deal with its thermal optimization. Three dimensional numerical simulations are performed to study the effect of angle of attack and attach angle (angle between VG and wall) of vortex generator on the fluid flow and heat transfer characteristics of a flat-plate channel. The flow is assumed as steady state, incompressible and laminar within the range of studied Reynolds numbers (Re = 380, 760, 1140). In the present work, the average and local Nusselt number and pressure drop are investigated for Rectangular vortex generator (RVG) with varying angle of attack and attach angle. The numerical results indicate that the heat transfer and pressure drop increases with increasing the angle of attack to a certain range and then decreases with increasing angle of attack. Moreover, the attach angle also plays an importance role; a 90° attach angle is not necessary for enhancing the heat transfer. Usually, heat transfer enhancement is achieved at the expense of pressure drop penalty. To find the optimal position of vortex generator to obtain maximum heat transfer and minimum pressure drop, the data obtained from numerical simulations are used to train a BRANN (Bayesian-regularized artificial neural network). This in turn is used to drive multi-objective genetic algorithm (MOGA) to find the optimal parameters of VGs in the form of Pareto front. The optimal values of these parameters are finally presented.


2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


Sign in / Sign up

Export Citation Format

Share Document