scholarly journals Freundlich and Langmuir Isotherm Studies of Phosphorus Sorption unto Soils Derived from Basement Complex Rock, Alluvium, Coastal Plain Sand and Shale Parent Materials

2021 ◽  
pp. 27-36
Author(s):  
Adams Emomu ◽  
Esohe Ehis-Iyoha ◽  
Emmanuel Ochuko Ufinomue ◽  
Donald Okpo Odidi ◽  
Sandra Amen Ighedosa

To provide information on best model to predict Phosphorus (P) Sorption unto Soils derived from Basement Complex Rock, Alluvium, Coastal Plain Sand and Imo Shale Parent Materials in 3 states of Nigeria. Completely randomized design was used to collect surface soil samples in 3 replications from 4 locations in Nigeria. Samples were collected from Idanre, Koko, NIFOR and Uhonmora in Ondo, Delta and Edo states Nigeria, laboratory analysis was carried out in the Central analytical laboratory of Nigerian Institute for Oil-Palm Research (NIFOR) Benin City, Nigeria between march 2016 and September 2017. Soil samples were equilibrated in 25 ml of 0.01 M CaCl2 containing various concentration of P as KH2PO4  to give 0, 50, 100, 150, 200 and 250 mg/L P for 24 hours (h) at room temperature 25 ± 2oC. 3 drops of CHCl3 was added to inhibit P mineralization. The suspension was shaken for 24 h on a reciprocating mechanical shaker, centrifuged at 7000 rpm After equilibration, decanted and P determined using spectrophotometer. The sorption data were fitted to linear Freundlich and Langmuir sorption isotherm. Considering the Freundlich model, P adsorption capacity (a) and P sorption energy (n) was highest in soils B (1400 mg kg-1) and (2.806 L kg-1) respectively. The Freundlich model fitted better to the data obtained with average root mean square error (RMSE) and R2 value of 0.69 and 0.951 respectively, as against average RMSE and R2 value of 1.60 and 0.883 respectively obtained from Langmuir model. The sorption data fitted well to Freundlich and Langmuir isotherms of which Freundlich Adsorption model was found to be better based on lowest RMSE (0.69) and highest regression (R2 = 0.951) value. Freundlich model should be adopted to determine P sorption characteristics of the soils studied. These predictors, however, need further works to validate reliability.

Author(s):  
Robert Ehi Orhue ◽  
Adams Emomu ◽  
Esohe Obazuaye ◽  
Aimiesomon Michael Erhayimwen ◽  
Ajayi Gboyega Bepo

This study aimed at evaluating phosphorus (P) sorption capacities in Soils overlying basement complex Rock (A), Alluvium (B), coastal plain sand (C) and Imo shale (C) parent materials. Completely randomized design was used to collect soil samples from 5 depths in 3 replications from Idanre, Koko, NIFOR and Uhomora in Nigeria. Samples collected were analyzed in the central analytical laboratory of the Nigerian Institute for Oil palm Research, Benin City, Nigeria between march 2016 and September 2017. 60 soil samples were equilibrated in 25 ml of 0.01 M CaCl2 containing various concentration of P as KH2PO4  to give 0, 50, 100, 150, 200 and 250 mg/L P for 24 hours (h)  at room temperature 25 ± 2 oC. Genstat statistical package was used to calculate Analysis of variance, correlation of Phosphorus sorption index (PSI) with soil properties, coefficient of variation, means separation and Least Significant difference (LSD). The rate and %P adsorption increased with increasing concentration of P added to the soils. The P sorption capacities of the soils considering Freundlich model decreased in the order of D > B > C >A. %P adsorbed was highest in D soils with value of 15.19% for 100 mg/kg P added. The PSI correlated with organic carbon r = -0.58 P ≤ .05 in C soils, r = 0.44 P ≤ .05 in D soils, it also correlated with N r = -0.58 P ≤ .05 in C Soils, K r = 0.57 P ≤ .05, r = 0.49 P ≤ .05 in C and D soils respectively. D soils sorbed more P than other soils hence the D soils will require more P fertilization to attain optimum P concentration in soil solution, however further study is required to determine the form of P sorbed by these parent materials.


1980 ◽  
Vol 95 (1) ◽  
pp. 191-198 ◽  
Author(s):  
E. J. Udo

SummaryTotal, dithionite-extractable (‘free’) and oxalate-extractable (amorphous) Fe as Fe2O3 forms were determined in eight Nigerian soil profiles selected to include four major parent materials and different drainage conditions.Total Fe ranged from 1·98 to 15·01 % Fe2O3, the average contents being 4·40, 8·62, 12·59 and 13·49 Fe2O3 for soils derived from the coastal plain sands, basement complex rocks, shale and basalt, respectively. ‘Free’ Fe ranged from 0·08 to 12·28% Fe2O3, the basaltic soils having the highest content, and those on shale the least. Generally the poorly drained soils had low contents, the free Fe oxide constituting about 61 % of total Fe in well-drained soils, and only about 9% in poorly drained soils.The oxalate-extractable or non-crystalline Fe oxide ranged from 0·04 to 1·21% Fe2O3. The proportion of amorphous iron oxide, indicated by the ‘active’ ratio ‘oxalate-Fe/DCB-Fe’, was higher in poorly drained than in well-drained soils.The clay/DBC-Fe ratio remained constant in the well-drained soils but increased with depth in the poorly drained profiles, indicating a co-migration of free Fe oxide and clay in the former but not in the latter soils.In general, the relative distribution of the different Fe forms appeared influenced by both the parent materials and the drainage of the soils.


2016 ◽  
Vol 96 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Yongzhuang Wang ◽  
Joann K. Whalen ◽  
Xin Chen ◽  
Yanhong Cao ◽  
Bin Huang ◽  
...  

Exudation of low-molecular-weight organic acids (LMWOAs) from plant roots enhances phosphorus (P) acquisition from soil, either by dissolving P fixed in secondary minerals or by reducing P sorption to organo-minerals. How LMWOAs may modify P sorption in soils with contrasting pH is not well understood, much less the mechanisms involved. The effects of three common LMWOAs (oxalic, citric, and malic acids) on P sorption in calcareous, neutral, and acidic soils were studied in batch experiments, followed by sequential P fractionation to elucidate the mechanisms whereby LMWOAs alter P sorption. The sorption data of the three soils fitted better to the Freundlich equation (r2 = 0.325–0.994, P < 0.05) than the Langmuir and linear equations. Oxalic, citric, and malic acids at 10 mmol kg−1 soil decreased the Freundlich P sorption parameters Kf and n, which represent P sorption capacity and energy, due to the fact that LMWOAs reduced P sorption in NaHCO3-Pi (soil soluble and exchangeable Pi, 23.8–30.9%) and NaOH-Pi (Fe-Pi and Al-Pi, 21.6–54.2%) fractions of the three soils. Comparing acidified P-LMWOAs solutions with the pH-adjusted P-LMWOAs solutions (pH = 7) had a minor effect on P sorption. Our results indicated that the reduction in soil P sorption was due to ligand exchange and chelation of LMWOAs with Fe and Al minerals, and the acid strength of LMWOAs had a minor effect on P sorption in calcareous, neutral, and acid soils.


2008 ◽  
Vol 10 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Arief Hartono

The effect of calcium silicate CaSiOJ the phosphorus (P) sorption characteristics were studied in Andisols Lembang.The amount of 0, 2.5 and 5% CaSiOJ (calcium silicate) or 0, 7.5 and 15 g calcium silicate per pot was added to the 300 g(oven-dry weight) soil and incubated for one month. A completely randomized design in double replication was set up. After one month incubation, P sorption and P sorption kinetic experiments were conducted The results of P sorption experiment showed that P sorption data were satisfactorily described by the Langmuir equation. which was used to determine P sorption maxima, bonding energies and P sorbed at 0.2 mg P £"' (standard P requirement). The application of calcium silicate did not affect significantly P sorption maxima but decreased significantly the P bonding energies. Calcium silicate also decreased significantly the standard P requirements. As for P sorption kinetic experiment. the results showed that application of 5% calcium silicate decreased significantly the rate constant of P sorption and P sorbed maximum at given amount of added P. The results suggested that the application of calcium silicate to the Andisols made added P was more available for plant.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ashebir Getie ◽  
Alemayehu Kiflu ◽  
Gashaw Meteke

Crop response to phosphorus (P) application is often erratic in most acidic soil types. The main processes for P losses from agricultural fields are fixation, crop removal, erosion, surface runoff, and subsurface leaching. The purpose of this experiment was to evaluate adsorption properties of selected soils, determine the external phosphorous requirements (EPRs) of the soils, and identify factors contributing to P sorption in two soils in North Ethiopia. In this experiment, separately weighed 1 g soil samples were equilibrated with KH2PO4 at rates of 0.5, 5, 10, 20, 30, 40, and 50 mg PL−1. The P sorption data were fitted well with both Langmuir and Freundlich models with average r2 values of 0.91 and 0.88, respectively. The adsorption maximum (Xm) of the Langmuir isotherm ranged from 588.20 mg P kg−1 soil in Luvisols to 833.3 mg P kg−1 soil in Nitisols. The EPRL values ranged between 86.20 to 93.28 mg P kg−1 for soils of the study area. Among the soil properties, clay content and Ex. Al were positively correlated with Xm. The path analysis revealed that clay, pH, and Av. P had a direct effect on P sorption parameters. The EPRL of the studied soils was 3.44 to 3.6 times greater than the blanket P fertilizer rate recommendation. It is concluded that P sorption models can effectively be used to discriminate soils based on P fixation ability. The result further indicates that the current P fertilizer application rate of 50 kg P ha−1 being practiced across all soil types should be revised after validating the models and EPR values estimated in this study for each soil both under greenhouse and in-the-field conditions.


Author(s):  
Berhanu Dinssa ◽  
Eyasu Elias

<span>One of the most soil fertility management problems for crop production on acidic soils of the Ethiopian highlands is phosphorus fixation. The research was executed to assess the P-sorption capacity and to determine the external P requirement of different acidic soils in the Southwestern highlands of Ethiopia. Phosphorus sorption capacity (Kf) and its relation with selected soil characteristics were assessed for some major agricultural soils in the Ethiopian highlands to answer the questions, ‘What are the amount of P-sorption capacity and external P requirement of Nitisols, Luvisols, Alisols, and Andosols in Ethiopia?’. Twelve surface soil samples (at depth of 0-30 cm) were gathered and the P-sorption capacity was estimated. Phosphorus-sorption data were obtained by equilibrating 1 g of the 12 soil samples with 25 ml of KH<sub>2</sub>PO<sub>4</sub> in 0.01 M CaCl2, having 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, and 330 mg P L<sup>-1</sup> for 24 hours. The data were adjusted to the Freundlich adsorption model and the relationship among P-sorption and soil characteristics was established by correlation analysis.  Clay content and exchangeable acidity, organic matter, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> oxides have affected phosphorus-sorption at a significance level of (P &lt; 0.05).  Alisols had the highest Kf value (413 mg kg<sup>-1</sup>) but Nitisols had the lowest Kf (280 mg kg<sup>-1</sup>). The external phosphorus fertilizer requirement of the soils was in the order of 25, 30, 32, and 26 mg P kg<sup>-1</sup> for Nitisols, Luvisols, Alisols, and Andosols sequentially. The Kf varies among different soil types of the study area. The magnitude of the soil’s Kf was affected by the pH of the soil, soil OM content, and oxides of Fe and Al. Therefore, knowledge of the soils’ P retention capacity is highly crucial to determine the correct rate of P </span><span>fertilizer</span><span> for crop production.</span>


2016 ◽  
Vol 14 (1) ◽  
pp. 1-9 ◽  
Author(s):  
I Rashmi ◽  
VRR Parama ◽  
AK Biswas

Phosphorus sorption characteristics of some Indian representative agricultural soils belonging to four soil orders namely Vertisol, Inceptisol, Alfisol and Ultisol were investigated for adsorption behaviour of P and sorption data were fitted to Langmuir and Freundlich equations. The Langmuir constant i.e. adsorption maxima was highest for Vertisol (716.85 ?g g-1), followed by Ultisol (633.3 ?g g-1), Alfisol (501.46 ?g g-1) and Inceptisol (522.93 ?g g-1) respectively. The Freundlich ‘k’ value for Vertisol, Inceptisol, Alfisol and Ultisol were 159.12, 59.41, 110.57 and 181.36 ?g g-1 respectively, whereas the ‘n’ values were 2.05, 1.92, 2.49 and 3.07 g ml-1 respectively. The phosphate adsorption isotherm gave good fit adopting Langmuir (r2 = 0.96 to 0.99) and Freundlich (r2= 0.95 to 0.99) for the four soils. Phosphorus sorption maxima was significantly correlated with clay (r2=0.70), Al (r2= 0.73) and Fe (r2=0.81) forms, MPBC (r2=0.67) and Freundlich constants (r2=0.82). Among the various soil properties which correlated with P sorption maxima of significance was clay content (r2=0.97) was significantly correlated. The study illustrated that P sorption isotherm in relation to soil properties can be used as a tool of P management in sustainable crop production.SAARC J. Agri., 14(1): 1-9 (2016)


2017 ◽  
Vol 48 (8) ◽  
pp. 955-962
Author(s):  
P. E. Osayande ◽  
P. O. Oviasogie ◽  
E. R. Orhue ◽  
B. E. Awanlemhen ◽  
E. Oko-oboh

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 22
Author(s):  
Sara Gonzalez-Rodriguez ◽  
Maria Luisa Fernandez-Marcos

Sorption of oxyanions by soils and mineral surfaces is of interest due to their role as nutrients or pollutants. Volcanic soils are variable charge soils, rich in active forms of aluminum and iron, and capable of sorbing anions. Sorption and desorption of vanadate, arsenate, and chromate by two African andosols was studied in laboratory experiments. Sorption isotherms were determined by equilibrating at 293 K soil samples with oxyanion solutions of concentrations between 0 and 100 mg L−1 V, As, or Cr, equivalent to 0−2.0 mmol V L−1, 0−1.3 mmol As L−1, and 0−1.9 mmol Cr L−1, in NaNO3; V, As, or Cr were determined by ICP-mass spectrometry in the equilibrium solution. After sorption, the soil samples were equilibrated with 0.02 M NaNO3 to study desorption. The isotherms were adjusted to mathematical models. After desorption with NaNO3, desorption experiments were carried out with a 1 mM phosphate. The sorption of vanadate and arsenate was greater than 90% of the amount added, while the chromate sorption was much lower (19–97%). The sorption by the Silandic Andosol is attributed to non-crystalline Fe and Al, while in the Vitric Andosol, crystalline iron species play a relevant role. The V and Cr sorption isotherms fitted to the Freundlich model, while the As sorption isotherms conformed to the Temkin model. For the highest concentrations of oxyanions in the equilibrating solution, the sorbed concentrations were 37–38 mmol V kg−1, 25 mmol As kg−1, and 7.2–8.8 mmol Cr kg−1. The desorption was low for V and As and high for Cr. The comparison of the sorption and desorption isotherms reveals a pronounced hysteresis for V in both andosols and for Cr in the Silandic Andosol. Phosphate induced almost no V desorption, moderate As desorption, and considerable Cr desorption.


Sign in / Sign up

Export Citation Format

Share Document