The Nature of Micro-Variability in Blazars

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 114
Author(s):  
James R. Webb ◽  
Viviana Arroyave ◽  
Douglas Laurence ◽  
Stephen Revesz ◽  
Gopal Bhatta ◽  
...  

We present the results of a long-term study designed to investigate the nature of micro-variability in blazars carried out primarily at the Southeastern Association for Research in Astronomy (SARA) observatories. We analyzed micro-variability data of fifteen OVV quasars and BL Lac sources collected from 1995 to 2021. The data set consists of single-band light curves interspersed with multi-color and micro-variability observations. This paper reports over 900 nights of CCD observations. We also incorporated observations from other observers as well as observations gleaned from the literature into our analysis. We employed differential photometry to measure magnitudes and then construct the long-term and micro-variability light curves. Our results indicate that there is no correlation between the presence of micro-variations and the brightness of the source. We present a viable theory to explain the intermittent micro-variability as pulses of radiation emitted by individual turbulent cells in the relativistic jet, which are stimulated by a passing shock wave. We present model fits and test results for various data sets, including WEBT light curves, Kepler light curves and a TESS light curve. Although the consensus in the community is that blazar jets must be turbulent, the identification of micro-variations as manifestations of actual turbulent cells is important for modeling these turbulent jets. We can obtain estimates of cell sizes (assuming a shock speed), and the distribution of cell sizes derived from observations is consistent with numerical simulation predictions.

2019 ◽  
Vol 12 (3) ◽  
pp. 1513-1530 ◽  
Author(s):  
Matthias Frey ◽  
Mahesh K. Sha ◽  
Frank Hase ◽  
Matthäus Kiel ◽  
Thomas Blumenstock ◽  
...  

Abstract. In a 3.5-year long study, the long-term performance of a mobile, solar absorption Bruker EM27/SUN spectrometer, used for greenhouse gas observations, is checked with respect to a co-located reference Bruker IFS 125HR spectrometer, which is part of the Total Carbon Column Observing Network (TCCON). We find that the EM27/SUN is stable on timescales of several years; the drift per year between the EM27/SUN and the official TCCON product is 0.02 ppmv for XCO2 and 0.9 ppbv for XCH4, which is within the 1σ precision of the comparison, 0.6 ppmv for XCO2 and 4.3 ppbv for XCH4. The bias between the two data sets is 3.9 ppmv for XCO2 and 13.0 ppbv for XCH4. In order to avoid sensitivity-dependent artifacts, the EM27/SUN is also compared to a truncated IFS 125HR data set derived from full-resolution TCCON interferograms. The drift is 0.02 ppmv for XCO2 and 0.2 ppbv for XCH4 per year, with 1σ precisions of 0.4 ppmv for XCO2 and 1.4 ppbv for XCH4, respectively. The bias between the two data sets is 0.6 ppmv for XCO2 and 0.5 ppbv for XCH4. With the presented long-term stability, the EM27/SUN qualifies as an useful supplement to the existing TCCON network in remote areas. To achieve consistent performance, such an extension requires careful testing of any spectrometers involved by application of common quality assurance measures. One major aim of the COllaborative Carbon Column Observing Network (COCCON) infrastructure is to provide these services to all EM27/SUN operators. In the framework of COCCON development, the performance of an ensemble of 30 EM27/SUN spectrometers was tested and found to be very uniform, enhanced by the centralized inspection performed at the Karlsruhe Institute of Technology prior to deployment. Taking into account measured instrumental line shape parameters for each spectrometer, the resulting average bias across the ensemble with respect to the reference EM27/SUN used in the long-term study in XCO2 is 0.20 ppmv, while it is 0.8 ppbv for XCH4. The average standard deviation of the ensemble is 0.13 ppmv for XCO2 and 0.6 ppbv for XCH4. In addition to the robust metric based on absolute differences, we calculate the standard deviation among the empirical calibration factors. The resulting 2σ uncertainty is 0.6 ppmv for XCO2 and 2.2 ppbv for XCH4. As indicated by the executed long-term study on one device presented here, the remaining empirical calibration factor deduced for each individual instrument can be assumed constant over time. Therefore the application of these empirical factors is expected to further improve the EM27/SUN network conformity beyond the scatter among the empirical calibration factors reported above.


1998 ◽  
Vol 11 (1) ◽  
pp. 382-382
Author(s):  
Wonyong Han ◽  
Chun-Hwey Kim ◽  
Jae Woo Lee ◽  
Ho-Il Kim ◽  
Woo-Baik Lee

The BVR CCD observations of W UMa-type eclipsing binary SS Arietis were made for ten nights from November 1996 to December 1996 at the Sobaeksan Astronomy Observatory. From the observed light curves, nine new times of minimum lights were derived from the Kwee and van Woerden’s method. Improved light elements for this system were determined from these minimum lights with all the published minima. The analysis of the times of minima of SS Ari confirms that the orbital period of SS Ari has been suffering from a sinusoidal variation as the suggestions of other previous investigators (Kaluzny & Pojmanski 1984, Demircan & Selam 1993). The calculation shows that the cyclic period change has a period of about 56.3yrs with an amplitude of about 0.d052. The period variation has been discussed in terms of two potential mechanisms: 1) the light-time effect due to a hypothetical third body and 2) deformations in the convective envelope of a magnetically active component. The BVR light curves of SS Ari observed for about one month showed the existence of cycle to cycle light variations. Long-term light changes of SS Ari are discussed in terms of the period variation of the binary system.


1992 ◽  
Vol 49 (8) ◽  
pp. 1588-1596 ◽  
Author(s):  
Donald J. McQueen ◽  
Edward L. Mills ◽  
John L. Forney ◽  
Mark R. S. Johannes ◽  
John R. Post

We used standardized methods to analyze a 14-yr data set from Oneida Lake and a 10-yr data set from Lake St. George. We estimated mean summer concentrations of several trophic level indicators including piscivores, planktivores, zooplankton, phytoplankton, and total phosphorus, and we then investigated the relationships between these variables. Both data sets yielded similar long-term and short-term trends. The long-term mean annual trends were that (1) the relationships between concentrations of planktivores and zooplankton (including daphnids) were always negative, (2) the relationships between concentrations of zooplankton and various measures of phytoplankton abundance were unpredictable and never statistically significant, and (3) the relationships between total phosphorus and various measures of phytoplankton abundance were always positive. Over short periods, the data from both lakes showed periodic, strong top-down relationships between concentrations of zooplankton (especially large Daphnia) and chlorophyll a, but these events were unpredictable and were seldom related to piscivore abundance.


2017 ◽  
Vol 13 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Daniela Štaffenová ◽  
Ján Rybárik ◽  
Miroslav Jakubčík

AbstractThe aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.


2018 ◽  
Vol 1 (4) ◽  
pp. e00080
Author(s):  
A.V. Mikurova ◽  
V.S. Skvortsov

The modeling of complexes of 3 sets of steroid and nonsteroidal progestins with the ligand-binding domain of the nuclear progesterone receptor was performed. Molecular docking procedure, long-term simulation of molecular dynamics and subsequent analysis by MM-PBSA (MM-GBSA) were used to model the complexes. Using the characteristics obtained by the MM-PBSA method two data sets of steroid compounds obtained in different scientific groups a prediction equation for the value of relative binding activity (RBA) was constructed. The RBA value was adjusted so that in all samples the actual activity was compared with the progesterone activity. The third data set of nonsteroidal compounds was used as a test. The resulted equation showed that the prediction results could be applied to both steroid molecules and nonsteroidal progestins.


2020 ◽  
Author(s):  
Tianyu Xu ◽  
Yongchuan Yu ◽  
Jianzhuo Yan ◽  
Hongxia Xu

Abstract Due to the problems of unbalanced data sets and distribution differences in long-term rainfall prediction, the current rainfall prediction model had poor generalization performance and could not achieve good prediction results in real scenarios. This study uses multiple atmospheric parameters (such as temperature, humidity, atmospheric pressure, etc.) to establish a TabNet-LightGbm rainfall probability prediction model. This research uses feature engineering (such as generating descriptive statistical features, feature fusion) to improve model accuracy, Borderline Smote algorithm to improve data set imbalance, and confrontation verification to improve distribution differences. The experiment uses 5 years of precipitation data from 26 stations in the Beijing-Tianjin-Hebei region of China to verify the proposed rainfall prediction model. The test set is to predict the rainfall of each station in one month. The experimental results shows that the model has good performance with AUC larger than 92%. The method proposed in this study further improves the accuracy of rainfall prediction, and provides a reference for data mining tasks.


2019 ◽  
Vol 622 ◽  
pp. A172 ◽  
Author(s):  
F. Murgas ◽  
G. Chen ◽  
E. Pallé ◽  
L. Nortmann ◽  
G. Nowak

Context. Rayleigh scattering in a hydrogen-dominated exoplanet atmosphere can be detected using ground- or space-based telescopes. However, stellar activity in the form of spots can mimic Rayleigh scattering in the observed transmission spectrum. Quantifying this phenomena is key to our correct interpretation of exoplanet atmospheric properties. Aims. We use the ten-meter Gran Telescopio Canarias (GTC) telescope to carry out a ground-based transmission spectra survey of extrasolar planets to characterize their atmospheres. In this paper we investigate the exoplanet HAT-P-11b, a Neptune-sized planet orbiting an active K-type star. Methods. We obtained long-slit optical spectroscopy of two transits of HAT-P-11b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) on August 30, 2016 and September 25, 2017. We integrated the spectrum of HAT-P-11 and one reference star in several spectroscopic channels across the λ ~ 400–785 nm region, creating numerous light curves of the transits. We fit analytic transit curves to the data taking into account the systematic effects and red noise present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp∕Rs) across wavelength. Results. By fitting both transits together, we find a slope in the transmission spectrum showing an increase of the planetary radius towards blue wavelengths. Closer inspection of the transmission spectrum of the individual data sets reveals that the first transit presents this slope while the transmission spectrum of the second data set is flat. Additionally, we detect hints of Na absorption on the first night, but not on the second. We conclude that the transmission spectrum slope and Na absorption excess found in the first transit observation are caused by unocculted stellar spots. Modeling the contribution of unocculted spots to reproduce the results of the first night we find a spot filling factor of δ = 0.62−0.17+0.20 and a spot-to-photosphere temperature difference of ΔT = 429−299+184 K.


2016 ◽  
Vol 9 (4) ◽  
pp. 1601-1612 ◽  
Author(s):  
Wilko Jessen ◽  
Stefan Wilbert ◽  
Bijan Nouri ◽  
Norbert Geuder ◽  
Holger Fritz

Abstract. Resource assessment for concentrated solar power (CSP) needs accurate direct normal irradiance (DNI) measurements. An option for such measurement campaigns is the use of thoroughly calibrated rotating shadowband irradiometers (RSIs). Calibration of RSIs and Si-sensors is complex because of the inhomogeneous spectral response of these sensors and incorporates the use of several correction functions. One calibration for a given atmospheric condition and air mass might not be suitable under different conditions. This paper covers procedures and requirements of two calibration methods for the calibration of rotating shadowband irradiometers. The necessary duration of acquisition of test measurements is examined with regard to the site-specific conditions at Plataforma Solar de Almería (PSA) in Spain. Seven data sets of long-term test measurements were collected. For each data set, calibration results of varying durations were compared to its respective long-term result. Our findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Calibration results within certain periods (i.e. November to January and April to May) show a higher likelihood of deviation. These effects can partially be attenuated by including more measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of year in which measurements commence.


2013 ◽  
Vol 6 (2) ◽  
pp. 779-809 ◽  
Author(s):  
B. Geyer

Abstract. The coastDat data sets were produced to give a consistent and homogeneous database mainly for assessing weather statistics and long-term changes for Europe, especially in data sparse regions. A sequence of numerical models was employed to reconstruct all aspects of marine climate (such as storms, waves, surges etc.) over many decades. Here, we describe the atmospheric part of coastDat2 (Geyer and Rockel, 2013, doi:10.1594/WDCC/coastDat-2_COSMO-CLM). It consists of a regional climate reconstruction for entire Europe, including Baltic and North Sea and parts of the Atlantic. The simulation was done for 1948 to 2012 with a regional climate model and a horizontal grid size of 0.22° in rotated coordinates. Global reanalysis data were used as forcing and spectral nudging was applied. To meet the demands on the coastDat data set about 70 variables are stored hourly.


1991 ◽  
Vol 148 ◽  
pp. 381-381
Author(s):  
William Tobin ◽  
A. C. Gilmore ◽  
Alan Wadsworth ◽  
S.R.D. West

Late in 1988 the Mt John University Observatory acquired a cryogenic CCD system from Photometrics Ltd (Tucson). The chip is a Thomson CSF TH7882 CDA comprising 384 × 576 pixels. As part of the evaluation process, we have begun two differential photometry programs of the Magellanic Clouds using the Mt John 0.6m Boller & Chivens telescope. On this telescope each CCD pixel corresponds to 0.6 arcsec. Mt John's southerly latitude (44°S) permits year-round observations of the Clouds.The first program concerns B, V and I photometry of five blue eclipsing binaries selected, on the basis of Gaposchkin's (1970, 1977) photographic light curves, to have roughly equal components with minimal interaction. HV 12634 has also been observed for comparison with the CCD light curves published by Jensen et al. (1988). Fig. 1 shows the B observations so far obtained for HV 1761, but the reduction is preliminary, being based on aperture-integrated magnitudes. The field is populous, and a final reduction will require use of a crowded-field reduction package such as ROMAFOT.


Sign in / Sign up

Export Citation Format

Share Document