scholarly journals Seed Priming: An Interlinking Technology between Seeds, Seed Germination and Seedling Establishment

2021 ◽  
Author(s):  
Sananda Mondal ◽  
Bandana Bose

Biologically seed is a small embryonic plant along with either endosperm or cotyledons, enclosed with in an outer protecting covering called seed coat. During the time of seed development large metabolic conversions take place, including proper partitioning of photo-assimilates and the formation of complex polymeric forms of carbohydrate, protein and fats for storing as seed reserves. In developing phase of seeds, every detail information stored in the embryonic plant are genetically and sometimes epigenetically also predetermined and influenced by various environmental/external factors already faced by the mother plant. In the growth cycle of plants, seed germination and seedling establishment are the two critical phases where survivability of the seedlings in natural habitats is a matter of question until the onset of photosynthesis by the established seedling. The various sequence of complex processes known to occur in both the phases i.e., an array of metabolic activities are initiating which eventually leads to the renewal of embryo growth of the dormant seeds and ultimately seedlings are established. Efficient seed germination is an important factor for agricultural sciences and successful establishment of germinated seedling requires a rapid and uniform emergence and root growth. With these aspects of seed physiology kept in mind the present chapter will be designed in such a way where, a gap filling, inter linking, eco- and farmers\' friendly technology i.e., ‘seed priming’ (a pre-sowing partial hydration of seeds) will be considered to improve the rate and uniformity of germination and seedling establishment. Under optimal and adverse environmental conditions, the primed seeds of diversified species lead to an enhanced germination performance with increased vigor index has been reported by various scientists which indicates a good establishment of seedlings in the field and thereafter enhance the performance of crops as a whole.

2019 ◽  
Vol 46 (6) ◽  
pp. 584
Author(s):  
Lilya Boucelha ◽  
Réda Djebbar ◽  
Ouzna Abrous-Belbachir

Pre-germination treatments represent the physiological methods that improve plant production by modulating the metabolic activities of germination before the emergence of the radicle. It was suggested that reactive oxygen species (ROS) play a crucial role in signalling seed germination. Our work consisted in studying changes in the redox status in the embryonic axis (radicle and plumule) and in cotyledons of Vigna unguiculata (L.) Walp. non-primed, osmoprimed (30% PEG6000), hydroprimed or twice hydroprimed seeds, by estimating antioxidant activities and production of ROS. Some antioxidant enzymatic activities as well as total non-enzymatic antioxidant capacity were measured. The production of hydrogen peroxide (H2O2) and superoxide anion (O2–) was also assessed by 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) respectively. The results obtained showed, on the one hand, that priming allows activation of antioxidant enzymes, especially in the plumule. On the other hand, these results showed that priming caused an accumulation of ROS in embryonic tissues. This may explain the improvement of seed germination performance according to the oxidative window model. Priming induced changes in the redox environment at the seed level. These changes were closely related to the pre-germination treatments. Indeed, a double cycle of hydration-rehydration induced the broadest spectrum of modifications of the redox status, which would explain the improvement of the seed vigour.


Author(s):  
Sandhya R Verma ◽  
Hitesh A Solanki

Seed germination and seedling growth are the two critical stages for crop establishment. These stages are the most sensitive to abiotic stresses, which decreases the germination percentage and increases germination time. Due to such abiotic stress, the germination of crop fails in adverse conditions. Salinity is one of the major abiotic stress, which adversely affects almost every aspect of the plant’s physiology, biochemistry and decreases yield. Salinity is the most severe threat to agriculture and major environmental factors that limit crop growth and productivity. Various techniques have been shown to improve emergence and stand establishment under salt stress. One of the most frequently utilized technique is seed priming. The seed priming process deals with the prior exposure of abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates pre-germination metabolic activities and enhances radicle protrusion. It enhances the antioxidant defense system and the repair of membranes. The process of seed priming and the mechanism of the effect of salinity on seed germination have been discussed. The physiological, biochemical, and molecular changes induced by priming leading to seed enhancement have also been covered.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1411
Author(s):  
Rashida Perveen ◽  
Xiukang Wang ◽  
Yasir Jamil ◽  
Qasim Ali ◽  
Shafaqat Ali ◽  
...  

The present investigation was undertaken to assess the effects of different doses (100, 300, and 500 mJ) of low power He–Ne laser (632.8 nm) irradiation on seed germination and thermodynamics attributes and activities of potential germinating enzymes in relation with changes in seed metabolites. He–Ne laser seed irradiation increased the amylase (Amy), protease (Pro) and glucosidase (Gluco) activities, with a significant improvement in seed thermodynamics and seed germination attributes. A fast increase was found in free fatty acids (FFA), free amino acids (FAA), chlorophyll (Chl), carotenoids (Car), total soluble sugars (TSS) and reducing sugars (RS) in laser treated seeds in parallel with fast decline in seed oil contents and total soluble proteins (TSP). Significant positive correlations were recorded in laser-induced enhanced seed energy levels, germination, activities of germination enzymes with levels of FAA, FFA, Chl, TSS and RS, but a negative correlation with the levels of TSP and oil. In conclusion, the seed treatment with 100 and 300 mJ He–Ne laser was more effective to improve the seed germination potential associated with an improvement in seed energy levels due to increased activities of germination enzymes due to the speedy breakdown of seed reserves to simple metabolites as building blocks.


2021 ◽  
Vol 22 (15) ◽  
pp. 8172
Author(s):  
Orarat Ginsawaeng ◽  
Michal Gorka ◽  
Alexander Erban ◽  
Carolin Heise ◽  
Franziska Brueckner ◽  
...  

During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.


2021 ◽  
Vol 756 (1) ◽  
pp. 012047
Author(s):  
M P Anwar ◽  
R Jahan ◽  
M R Rahman ◽  
A K M M Islam ◽  
F M J Uddin

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 419
Author(s):  
Siaka Dembélé ◽  
Robert B. Zougmoré ◽  
Adama Coulibaly ◽  
John P. A. Lamers ◽  
Jonathan P. Tetteh

Agriculture in Mali, a country in Sahelian West Africa, strongly depends on rainfall and concurrently has a low adaptive capacity, making it consequently one of the most vulnerable regions to climate change worldwide. Since early-season drought limits crop germination, and hence growth, ultimately yield during rain-fed depending on production is commonly experienced nowadays in Mali. Germination and establishment of key crops such as the staple sorghum could be improved by seed priming. The effects of hydro-priming with different water sources (e.g., distilled, tap, rain, river, well water) were evaluated respectively for three priming time durations in tepid e.g., at 25 °C (4, 8, and 12 h) and by hot water at 70 °C (in contrast to 10, 20, and 30 min.) in 2014 and 2015. Seed germination and seedling development of nine sorghum genotypes were monitored. Compared to non-primed seed treatments, hydro-priming significantly [p = 0.01] improved final germination percentage, germination rate index, total seedling length, root length, root vigor index, shoot length, and seedling dry weight. The priming with water from wells and rivers resulted in significant higher seed germination (85%) and seedling development, compared to the three other sources of water. Seed germination rate, uniformity, and speed were enhanced by hydro-priming also. It is argued that hydro-priming is a safe and simple method that effectively improve seed germination and seedling development of sorghum. If used in crop fields, the above most promising genotypes may contribute to managing early season drought and avoid failure of seed germination and crop failure in high climate variability contexts.


2003 ◽  
Vol 60 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Warley Marcos Nascimento

Important factors affecting seed priming have not been extensively reported in muskmelon (Cucumis melo L.) studies. The optimization of the seed priming technique becomes very important at the commercial scale. Little information has been reported on seedling development of muskmelon subsequent to seed priming. Seeds of muskmelon were primed in darkness at 25°C in different solutions and three osmotic potentials. Seeds were also primed with and without aeration during different periods. In relation to osmotic solutions, an osmotic potential around -1.30 MPa is most adequate for muskmelon priming. Salt solutions gave better germination rate but were deleterious for seed germination, especially at higher osmotic potentials. Aeration of the soaking salt solution gave faster germination at 17°C, and because of the early germination, these treatments probably presented a better seedling development. Deleterious effect on total seed germination was observed for long soaking periods with aeration. Fungal growth increased on seeds primed in aerated solutions. Seeds from priming treatments had a better germination rate and seedling development under 17 and 25°C.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


Sign in / Sign up

Export Citation Format

Share Document