seasonal adaptation
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 32)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tierney M Shaible ◽  
Luciano M Matzkin

Many insects inhabiting temperate climates are faced with changing environmental conditions throughout the year. Depending on the species, these environmental fluctuations can be experienced within a single generation or across multiple generations. Strategies for dealing with these seasonal changes vary across populations. Drosophila mojavensis is a cactophilic Drosophila species endemic to the Sonoran Desert. The Sonoran Desert regularly reaches temperatures of 50°C in the summer months. As individuals of this population are rare to collect in the summer months, we therefore simulated in a temperature and light controlled chamber the cycling temperatures experienced by D. mojavensis in the Sonoran Desert from April to July (four generations) to understand the physiological and life history changes that allow this population to withstand these conditions. In contrast to our hypothesis of a summer aestivation, we found that D. mojavensis continue to reproduce during the summer months, albeit with lower viability, but the longevity of the population is highly reduced during this period. As expected, stress resistance increased during the summer months in both the adult and the larval stages. This study examines several strategies for withstanding the Sonoran Desert summer conditions which may be informative in the study of other desert endemic species.


2021 ◽  
Author(s):  
Anouk Willemijn van Beurden ◽  
Janusz Meylahn ◽  
Stefan Achterhof ◽  
Johanna Meijer ◽  
Jos Rohling

The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) and consist of a network of coupled neurons, which are entrained to the environmental light-dark cycle. The phase coherence of the neurons is plastic and driven by the length of the day. With aging the capacity to behaviorally adapt to changes in the light regime reduces. The mechanisms underlying photoperiodic adaptation are largely unknown, but are important to unravel for the development of novel interventions to improve the quality of life of the elderly. We analyzed the neuronal synchronization of PER2::LUC protein expression in the SCN of young and old mice entrained to either long or short photoperiod and used the synchronization levels as input for a two-community noisy Kuramoto model. With the Kuramoto model we estimated the coupling strength between and within neuronal subpopulations. The model revealed that the coupling strength between and within subpopulations contributes to photoperiod induced changes in the phase relationship among neurons. We found that the SCN of young mice adapts in coupling strength over a large range, with low coupling strength in long photoperiod and higher coupling strength in short photoperiod. In aged mice we also found low coupling strength in long photoperiod, but strongly reduced capacity to reach high coupling strength in short photoperiod. The inability to respond with an increase in coupling strength shows that manipulation of photoperiod is not a suitable strategy to enhance clock function with aging. We conclude that the inability of aged mice to reach high coupling strength makes aged mice less capable to seasonal adaptation than young mice.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 805
Author(s):  
Melissa Carpenter ◽  
Linyao Peng ◽  
Andrew H. Smith ◽  
Jonah Joffe ◽  
Michael O’Connor ◽  
...  

Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects’ adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont—Hamiltonella defensa—studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such “hitchhiking” effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont—Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases—including the one described above for Hamiltonella—our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for “passenger” symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.


2021 ◽  
Vol 22 (17) ◽  
pp. 9623
Author(s):  
Laura Niiranen ◽  
Kari A. Mäkelä ◽  
Shivaprakash J. Mutt ◽  
Riikka Viitanen ◽  
Anna Kaisanlahti ◽  
...  

Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 842
Author(s):  
Wen-Zhao Cui ◽  
Jian-Feng Qiu ◽  
Tai-Ming Dai ◽  
Zhuo Chen ◽  
Jiang-Lan Li ◽  
...  

Diapause is a developmental transition in insects based on seasonal adaptation to adversity; it is regulated by a circadian clock system and the endocrine system. However, the molecular node and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated, but could not completely block, the predetermined effects of temperature and photoperiod on diapause determination, and this effect depended on the diapause hormone (DH) pathway. The impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA), by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-suboesophageal ganglion then increased and restricted the decomposition, which continuously promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.


2021 ◽  
Author(s):  
Yang Yu ◽  
Alan O. Bergland

Populations of short-lived organisms can respond to spatial and temporal environmental heterogeneity through local adaptation. Local adaptation can be reflected on both phenotypic and genetic levels, and it has been documented in many organisms. Although some complex fitness-related phenotypes have been shown to vary across latitudinal clines and seasons in similar ways in Drosophila melanogaster populations, we lack a general understanding of the genetic architecture of local adaptation across space and time. To address this problem, we examined patterns of allele frequency change across latitudinal clines and between seasons at previously reported expression quantitative trait loci (eQTLs). We divided eQTLs into groups by utilizing differential expression profiles of fly populations collected across a latitudinal cline or exposed to different environmental conditions. We also examined clinal and seasonal patterns of allele frequency change at eQTLs grouped by tissues. In general, we find that clinally varying polymorphisms are enriched for eQTLs, and that these eQTLs change in frequency in predictable ways across the cline and in response to starvation tolerance. The enrichment of eQTL among seasonally varying polymorphisms is more subtle, and the direction of allele frequency change at eQTL appears to be somewhat idiosyncratic. Taken together, we suggest that clinal adaptation at eQTLs is distinct than that of seasonal adaptation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Heather E Machado ◽  
Alan Bergland ◽  
Ryan W Taylor ◽  
Susanne Tilk ◽  
Emily Behrman ◽  
...  

To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.


2021 ◽  
Vol 22 (9) ◽  
pp. 4965
Author(s):  
Laura Niiranen ◽  
Kari A. Mäkelä ◽  
Anthony Dona ◽  
Jan Krumsiek ◽  
Toni Karhu ◽  
...  

Investigations into the mechanisms regulating obesity are frantic and novel translational approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adaptation, we analyzed key central nervous system and peripheral signals regulating food intake and metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropeptide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb) were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis. However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine levels were not increased, demonstrating that the autumn fattening did not induce subacute inflammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate the autumnal fattening and prolonged fasting making the species unique in coping with the extreme environmental challenges.


Author(s):  
Ting Jiang ◽  
Yulin Zhu ◽  
Yingchuan Peng ◽  
Wanna Zhang ◽  
Haijun Xiao

Abstract Much progress has been made in understanding the environmental and hormonal systems regulating winter diapause. However, transcriptional regulation of summer diapause is still largely unknown, making it difficult to understand an all-around regulation profile of seasonal adaptation. To bridge this gap, comparison RNA-seq to profile the transcriptome and to examine differential gene expression profiles between non-diapause, summer diapause, and winter diapause groups were performed. A total number of 113 million reads were generated and assembled into 79,117 unigenes, with 37,492 unigenes categorized into 58 functional gene ontology groups, 25 clusters of orthologous group categories, and 256 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG analysis mapped 2108 differentially expressed genes to 48 and 67 pathways for summer and winter diapauses, respectively. Enrichment statistics showed that 11 identical pathways similarly overlapped in the top 20 enriched functional groups both related to summer and winter diapauses. We also identified 35 key candidate genes for universal and differential functions related to summer and winter diapause preparation. Furthermore, we identified some genes involved in the signaling and metabolic pathways that may be the key drivers to integrate environmental signals into the summer and winter diapause preparation. The current study provided valuable insights into global molecular mechanisms underpinning diapause preparation.


Sign in / Sign up

Export Citation Format

Share Document