land consolidation project
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Esra Kaplan ◽  
Hayriye Sibel Gülse Bal

Land consolidation is a powerful and effective tool in solving the fragmentation problem of agricultural lands to form a larger, more rational and efficient land for the farmers. The benefits of land consolidation projects are providing access to parcels, efficient use of water resources, real location of parcels, and reducing the costs of irrigation and drainage projects. Although not sufficiently successful, the land consolidation projects in Turkey had been initiated in 1961. This study was aimed to measure and assess the knowledge, expectation and attitudes of farmers on the land consolidation project planned to be implemented for some villages in Artova District of Tokat Province, Turkey. The study was carried out in Taşpınar and Aşağı Güçlü villages which were included in the consolidation program. In these villages, 62 farmers were selected by proportional sampling method out of 175 producers registered in the Farmer Registration System (FRS) and, face to face questionnaires were carried out with them. The results indicated that the producers support the project primarily due to the convenience in irrigation and increasing the efficiency of mechanization. Chi-square analysis revealed that the problems caused by disadvantages of fragmented land structure, importance of land integrity and the experience on a previous consolidation project area are important for the producers supporting the land consolidation project.


2020 ◽  
Author(s):  
Zhe Gao

<p>The Geo-Hazards Triggered of Serial Reclamation Land of Extreme Precipitation in Typical Regions of the Loess Plateau<br>Gao Zhe<sup>1</sup>,Zhang Genguang <sup>1*</sup>,Gao Jian'en<sup>1,2,3</sup>,Li Xingyao<sup>1</sup>,Han Jianqiao<sup>2,3</sup>,Kang Youcai<sup>3</sup>,Guo Zihao<sup>3</sup>,Long Shaobo<sup>2</sup>,Dou Shaohui<sup>2</sup>,Zhang Yuanyuan<sup>3</sup><br>1. College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, China;<br>2. Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, Shaanxi, China;<br>3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, China;</p><p>The “Gully Land Consolidation Project”(GLCP) was widely carried out all over the world, such as Spain, the United States and China. It was a new attempt to solve the shortage of regional land resources. Aiming at the problem that the influence of extreme rainstorms on the “Gully Land Consolidation Project”(GLCP) on the Loess Plateau.By using the method of actual measurement and analysis of categorical data, the erosion disaster in July 26 2017 was investigated in Niu Xue Gully of Wuding River Watershed in Zizhou County of the Central part of the Loess Plateau. The results showed : </p><p>(1) The Niu Xue Gully Small Watershed in Zizhou County (109°55'25"E, 37°39'46"N), which was located in the central part of the Loess Plateau and belonged to the northern Shaanxi Loess Hilly-Gully region. The Niu Xuegou catchment covered an area of 0.48 km<sup>2</sup> and the average altitude of the region in about 1000-1200 meters, land consolidation in the basin about 38 mu(25333.3m<sup>2</sup>)since 2014.</p><p>(2) This storm was characterized by "long duration and large precipitation", the accumulated rainfall was 147.9 mm, the average rainfall intensity was 13.45 mm/h, the maximum rainfall intensity was close to 5 mm/min, the maximum flood peak discharge was 44.64 m<sup>3</sup>/s, the flood duration was about 11 hours, and the flood recurrence period was more than once in a hundred years.</p><p>(3) The storm caused nearly a thousand geological hazards at the channel of the basin. The main types of disasters were as follows, gravity erosion types, such as landslides, landslides, and mudflows, account for 14.85% of the conventional geological hazards; secondary disasters of water erosion types, such as trench erosion and dam erosion, occurring at different locations on the slope, accounted for 51.05% and composite new-derived land destruction and dam break disasters account for nearly 10% .</p><p>(4) The damage of cascade land preparation was closely related to the average flood discharge, embankment height and ecological vegetation cover in the watershed.<br>The investigation provided technical support for the consolidation of the Chinese implementation of the "Cropland to Forest (Grass)" results on the Loess Plateau, and also provided theoretical support for the safe implementation of the “Gully Land Consolidation Project”(GLCP) around the world.<br><br></p><p>Keywords: The loess plateau; Extreme rainstorm;The “Gully Land Consolidation Project”(GLCP)</p><p>Funding:(National Key R&D Program of China: 2017YFC0504703);(National Natural Science Foundation of China,41877078,41371276,51879227);(Research and Development and Integrated demonstration of key Technologies in soil and Water Conservation Engineering,A315021615)</p><p><strong>        </strong></p>


2020 ◽  
Vol 199 ◽  
pp. 00006
Author(s):  
Yulin Shan ◽  
Jiancang Xie ◽  
Na Lei ◽  
Qiguang Dong

To clarify the characteristics of soil moisture in the slope of watershed of the gully land consolidation watershed, and to further guide the implementation of the gully land consolidation project and vegetation restoration in this area, this study selected a typical slope of gully land consolidation watershed as the research object. The soil moisture of different slope positions was monitored and analyzed, and its temporal stability was analyzed. The results showed that: 1) The average soil moisture of different slope positions increased with the increase of soil depth, and the variability showed an increasing-decreasing-increasing trend, and the variability was the smallest at about 70 cm from the surface with weak variability, and the soil moisture variability in other layers is moderate. 2) On the slope, the distribution characteristics of soil moisture content were as follows: upslope <middleslope <downslope position. The differences of soil moisture between the upslope and downslope, midslope and downslope were significant. 3) The temporal stability analysis of the soil moisture showed that there is high stability between August and September of the soil moisture of the 0-50 cm and the correlation is extremely significant, while the soil moisture content of 50-100 cm range has a significant correlation between May and June. 4) The time stability of soil moisture in the middle slope position is the highest, followed by the upslope position, and the time stability in the downslope position is the lowest. 5) The best time stability point in the study area is the M3 point of the middle slope.


Sign in / Sign up

Export Citation Format

Share Document