newborn neuron
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Michael Notaras ◽  
Aiman Lodhi ◽  
Estibaliz Barrio-Alonso ◽  
Careen Foord ◽  
Tori Rodrick ◽  
...  

AbstractIt is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human-specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined “enviromimetic” compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass-spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. However, of our 6 treatment groups, human-derived organoids treated with the cannabinoid agonist WIN 55,212-2 exhibited the least convergence of all groups. Single-cell analysis revealed that WIN 55,212-2 increased DNA fragmentation, an indicator of apoptosis, in human-derived dorsal forebrain organoids. We subsequently confirmed induction of DNA damage and apoptosis by WIN 55,212-2 within 3D human-derived dorsal forebrain organoids. Lastly, in a BrdU pulse-chase neocortical neurogenesis paradigm, we identified that WIN 55,212-2 was the only enviromimetic treatment to disrupt newborn neuron numbers within human-derived dorsal forebrain organoids. Cumulatively this study serves as both a resource and foundation from which human 3D biologics can be used to resolve the non-genomic effects of neuropsychiatric risk factors under controlled laboratory conditions. While synthetic cannabinoids can differ from naturally occurring compounds in their effects, our data nonetheless suggests that exposure to WIN 55,212-2 elicits neurotoxicity within human-derived developing forebrain tissue. These human-derived data therefore support the long-standing belief that maternal use of cannabinoids may require caution so to avoid any potential neurodevelopmental effects upon developing offspring in utero.


2021 ◽  
Vol 80 (5) ◽  
pp. 467-475
Author(s):  
Yu-Qing Li ◽  
C Shun Wong

Abstract 5′-Adenosine monophosphate-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, plays a role in cell fate determination. Whether AMPK regulates hippocampal neuronal development remains unclear. Hippocampal neurogenesis is abrogated after DNA damage. Here, we asked whether AMPK regulates adult hippocampal neurogenesis and its inhibition following irradiation. Adult Cre-lox mice deficient in AMPK in brain, and wild-type mice were used in a birth-dating study using bromodeoxyuridine to evaluate hippocampal neurogenesis. There was no evidence of AMPK or phospho-AMPK immunoreactivity in hippocampus. Increase in p-AMPK but not AMPK expression was observed in granule neurons and subgranular neuroprogenitor cells (NPCs) in the dentate gyrus within 24 hours and persisted up to 9 weeks after irradiation. AMPK deficiency in Cre-lox mice did not alter neuroblast and newborn neuron numbers but resulted in decreased newborn and proliferating NPCs. Inhibition of neurogenesis was observed after irradiation regardless of genotypes. In Cre-lox mice, there was further loss of newborn early NPCs and neuroblasts but not newborn neurons after irradiation compared with wild-type mice. These results are consistent with differential negative effect of AMPK on hippocampal neuronal development and its inhibition after irradiation.


Author(s):  
Martin Regensburger ◽  
Judith Stemick ◽  
Eliezer Masliah ◽  
Zacharias Kohl ◽  
Beate Winner
Keyword(s):  

2020 ◽  
Vol 21 (8) ◽  
pp. 400-400
Author(s):  
Sian Lewis
Keyword(s):  

2020 ◽  
Vol 21 (3) ◽  
pp. 1133 ◽  
Author(s):  
Baruh Polis ◽  
Kolluru D. Srikanth ◽  
Vyacheslav Gurevich ◽  
Naamah Bloch ◽  
Hava Gil-Henn ◽  
...  

Adult neurogenesis is a complex physiological process, which plays a central role in maintaining cognitive functions, and consists of progenitor cell proliferation, newborn cell migration, and cell maturation. Adult neurogenesis is susceptible to alterations under various physiological and pathological conditions. A substantial decay of neurogenesis has been documented in Alzheimer’s disease (AD) patients and animal AD models; however, several treatment strategies can halt any further decline and even induce neurogenesis. Our previous results indicated a potential effect of arginase inhibition, with norvaline, on various aspects of neurogenesis in triple-transgenic mice. To better evaluate this effect, we chronically administered an arginase inhibitor, norvaline, to triple-transgenic and wild-type mice, and applied an advanced immunohistochemistry approach with several biomarkers and bright-field microscopy. Remarkably, we evidenced a significant reduction in the density of neuronal progenitors, which demonstrate a different phenotype in the hippocampi of triple-transgenic mice as compared to wild-type animals. However, norvaline showed no significant effect upon the progenitor cell number and constitution. We demonstrated that norvaline treatment leads to an escalation of the polysialylated neuronal cell adhesion molecule immunopositivity, which suggests an improvement in the newborn neuron survival rate. Additionally, we identified a significant increase in the hippocampal microtubule-associated protein 2 stain intensity. We also explore the molecular mechanisms underlying the effects of norvaline on adult mice neurogenesis and provide insights into their machinery.


2020 ◽  
Vol 4 ◽  
pp. 247054702092371
Author(s):  
Tyler R. Nickle ◽  
Erica M. Stanley ◽  
David S. Middlemas

Background There are no data on the effect of exogenous corticosterone on depressive-like behavior in juvenile rats. Furthermore, it has not been tested whether the effects of corticosterone in female rats is different before or after puberty. Objective We tested the effect of corticosterone treatment on female pre- and peri-pubescent juvenile rats on depressive-like behavior. Methods Female juvenile rats were divided into pre-pubescent (post-natal day 7–27) or peri-pubescent (post-natal day 28–48) groups and administered daily corticosterone (40 mg kg−1 day−1) for 21 days. Depressive-like behavior was assessed using a modified forced swim test and the sucrose preference test. After behavioral assessment, brains were analyzed to determine if there were changes in cell proliferation and newborn neuron survival in the dentate gyrus of the dorsal hippocampus. Results Chronic corticosterone treatment did not affect behavior or neurogenesis in female pre-pubescent juvenile rats. However, female peri-pubescent rats injected with corticosterone showed increased depressive-like behavior as well as a decrease in cell proliferation in the subgranular zone. Furthermore, there was an inverse correlation between time spent immobile in the forced swim test and cell proliferation in the granule cell layer in peri-pubescent rats. Conclusions Corticosterone induces depressive-like behavior in peri-pubescent, but not in pre-pubescent female rats. Finally, our results suggest that depressive-like behavior may be associated with a decrease in hippocampal cell proliferation in female peri-pubescent rats.


2019 ◽  
Author(s):  
Baruh Polis ◽  
Vyacheslav Gurevich ◽  
Naamah Bloch ◽  
Abraham O. Samson

AbstractAdult neurogenesis is a complex physiological process, which plays a central role in maintaining cognitive functions, and consists of progenitor cell proliferation, newborn cell migration, and cell maturation. Adult neurogenesis is susceptible to alterations under various physiological and pathological conditions. A substantial decay of neurogenesis has been documented in Alzheimer’s disease (AD) patients and animal AD models; however, several treatment strategies can halt any further decline and even induce neurogenesis.Our previous results indicated a potential effect of arginase inhibition, with norvaline, on various aspects of neurogenesis in triple-transgenic mice. To better evaluate this effect, we chronically administer an arginase inhibitor, norvaline, to triple-transgenic and wild-type mice, and apply an advanced immunohistochemistry approach with several biomarkers and bright-field microscopy.Remarkably, we evidence a significant reduction in the density of neuronal progenitors, which demonstrate a different phenotype in the hippocampi of triple-transgenic mice as compared to wild-type animals. However, norvaline shows no significant effect upon the progenitor cell number and constitution. We demonstrate that norvaline treatment leads to an escalation of the polysialylated neuronal cell adhesion molecule immunopositivity, which suggests an improvement in the newborn neuron survival rate. Additionally, we identify a significant increase in the hippocampal microtubule-associated protein 2 stain intensity. We also explore the molecular mechanisms underlying the effects of norvaline on adult mice neurogenesis and provide insights into their machinery.


Sign in / Sign up

Export Citation Format

Share Document