biphasic pulse
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Javad Paknahad ◽  
Pragya Kosta ◽  
Jean-Marie C. Bouteiller ◽  
Mark S. Humayun ◽  
Gianluca Lazzi

Abstract Objective. Retinal implants have been developed to electrically stimulate healthy retinal neurons in the progressively degenerated retina. Several stimulation approaches have been proposed to improve the visual percept induced in patients with retinal prostheses. We introduce a computational model capable of simulating the effects of electrical stimulation on retinal neurons. Leveraging this computational platform, we delve into the underlying mechanisms influencing the sensitivity of retinal neurons’ response to various stimulus waveforms. Approach. We implemented a model of spiking bipolar cells (BCs) in the magnocellular pathway of the primate retina, diffuse BC subtypes (DB4), and utilized our multiscale Admittance Method (AM)-NEURON computational platform to characterize the response of BCs to epiretinal electrical stimulation with monophasic, symmetric, and asymmetric biphasic pulses. Main Results. Our investigations yielded four notable results: (i) The latency of BCs increases as stimulation pulse duration lengthens; conversely, this latency decreases as the current amplitude increases. (ii) Stimulation with a long anodic-first symmetric biphasic pulse (duration > 8 ms) results in a significant decrease in spiking threshold compared to stimulation with similar cathodic-first pulses (from 98.2 µA to 57.5 µA). (iii) The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel was a prominent contributor to the reduced threshold of BCs in response to long anodic-first stimulus pulses. (iv) Finally, extending the study to asymmetric waveforms, our results predict a lower BCs threshold using asymmetric long anodic-first pulses compared to that of asymmetric short cathodic-first stimulation. Significance. This study predicts the effects of several stimulation parameters on spiking BCs response to electrical stimulation. Of importance, our findings shed light on mechanisms underlying the experimental observations from the literature, thus highlighting the capability of the methodology to predict and guide the development of electrical stimulation protocols to generate a desired biological response, thereby constituting an ideal testbed for the development of electroceutical devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hudong Zhang ◽  
Xiaolong Tan ◽  
Yufeng Pan ◽  
Yuan Chai

Recent clinical practice has found that the spike-wave discharge (SWD) scopes of absence seizures change from small cortical region to large thalamocortical networks, which has also been proved by theoretical simulation. The best biophysics explanation is that there are interactions between coupled cortico-thalamic and thalamocortical circuits. To agree with experiment results and describe the phenomena better, we constructed a coupled thalamocortical model with bidirectional channel (CTMBC) to account for the causes of absence seizures which are connected by the principle of two-way communication of neural pathways. By adjusting the coupling strength of bidirectional pathways, the spike-wave discharges are reproduced. Regulatory mechanism for absence seizures is further applied to CTMBC via four different targeted therapy schemes, such as deep brain stimulation (DBS), charge-balanced biphasic pulse (CBBP), coordinated reset stimulation (CRS) 1 : 0, and (CRS) 3 : 2. The new CTMBC model shows that neurodiversity in bidirectional interactive channel could supply theory reference for the bidirectional communication mode of thalamocortical networks and the hypothesis validation of pathogenesis.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ehud J Schmidt ◽  
Hassan Elahi ◽  
Ryan Baumgaertner ◽  
Henry R Halperin

Introduction: External defibrillators are used for cardioversion and resuscitation after sudden cardiac arrest (SCA). External defibrillators are also required for emergency MRI (acute stroke, spinal trauma). Low-power (9 Joule) ICD RPDs [1], and MRI-conditional external defibrillator prototypes exist [2]. An RPD external defibrillator was constructed, consisting of a Zoll defibrillator integrated with a tetanizing unit. The tetanizing waveform slowly compressed chest musculature prior to the strong biphasic defibrillating pulse, reducing chest contraction during the biphasic pulse, the major pain source. This RPD system (Fig. 1A-D) was evaluated for pain reduction and defibrillation effectiveness in swine. Method: The tetanizing unit consisted of a programmable generator that delivered a triangular 1-KHz pulse of 250-2000msec duration and 10-100 Volt peak amplitude, and subsequently triggered the conventional defibrillator to send out standard short (8msec) powerful (20-400 J) biphasic pulses. Forward limb motion (Fig. 1E), an established pain measure [3], was evaluated by measuring limb acceleration, acceleration rate and work (energy). 5 swine were arrested electrically and then defibrillated. RPD was repeated 15-20 times/swine, varying tetanizing parameters and biphasic energy. Results: Fig. 1F-H compare an RPD defibrillation and equivalent biphasic defibrillation, showing smaller accelerations and acceleration rates. Fig. 1J shows work results, at 30-200J biphasic energy, demonstrating an 83 + 15% limb work reduction with the RPD waveforms. Optimal tetanizing parameters were 15-25V amplitude and 500-750msec duration. Rhythm recovery for RPD and conventional defibrillation was identical. Conclusions: Reduced pain defibrillation may allow cardioversion without anesthesia and faster defibrillation after SCA. References: [1] Hunter DW 2016. [2] Schmidt EJ 2016. [3] Boriani G, 2005.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3233
Author(s):  
Haosu Zhang ◽  
Petro Julkunen ◽  
Axel Schröder ◽  
Anna Kelm ◽  
Sebastian Ille ◽  
...  

Navigated transcranial magnetic stimulation (nTMS) is increasingly used for mapping of motor function prior to surgery in patients harboring motor-eloquent brain lesions. To date, single-pulse nTMS (sp-nTMS) has been predominantly used for this purpose, but novel paired-pulse nTMS (pp-nTMS) with biphasic pulse application has been made available recently. The purpose of this study was to systematically evaluate pp-nTMS with biphasic pulses in comparison to conventionally used sp-nTMS for preoperative motor mapping of lower extremity (lE) muscle representations. Thirty-nine patients (mean age: 56.3 ± 13.5 years, 69.2% males) harboring motor-eloquent brain lesions of different entity underwent motor mapping of lE muscle representations in lesion-affected hemispheres and nTMS-based tractography of the corticospinal tract (CST) using data from sp-nTMS and pp-nTMS with biphasic pulses, respectively. Compared to sp-nTMS, pp-nTMS enabled motor mapping with lower stimulation intensities (61.8 ± 13.8% versus 50.7 ± 11.6% of maximum stimulator output, p < 0.0001), and it provided reliable motor maps even in the most demanding cases where sp-nTMS failed (pp-nTMS was able to provide a motor map in five patients in whom sp-nTMS did not provide any motor-positive points, and pp-nTMS was the only modality to provide a motor map in one patient who also did not show motor-positive points during intraoperative stimulation). Fiber volumes of the tracked CST were slightly higher when motor maps of pp-nTMS were used, and CST tracking using pp-nTMS data was also possible in the five patients in whom sp-nTMS failed. In conclusion, application of pp-nTMS with biphasic pulses enables preoperative motor mapping of lE muscle representations even in the most challenging patients in whom the motor system is at high risk due to lesion location or resection.


2020 ◽  
Vol 25 (Suppl. 1-2) ◽  
pp. 96-108 ◽  
Author(s):  
James O. Phillips ◽  
Leo Ling ◽  
Amy Nowack ◽  
Brenda Rebollar ◽  
Jay T. Rubinstein

Background: A combined vestibular and cochlear prosthesis may restore hearing and balance to patients who have lost both. To do so, the device should activate each sensory system independently. Objectives: In this study, we quantify auditory and vestibular interactions during interleaved stimulation with a combined 16-channel cochlear and 6-channel vestibular prosthesis in human subjects with both hearing and vestibular loss. Methods: Three human subjects were implanted with a combined vestibular and cochlear implant. All subjects had severe-to-profound deafness in the implanted ear. We provided combined stimulation of the cochlear and vestibular arrays and looked for interactions between these separate inputs. Our main outcome measures were electrically evoked slow-phase eye velocities during nystagmus elicited by brief trains of biphasic pulse stimulation of the vestibular end organs with and without concurrent stimulation of the cochlea, and Likert scale assessments of perceived loudness and pitch during stimulation of the cochlea, with and without concurrent stimulation of the vestibular ampullae. Results: All subjects had no auditory sensation resulting from semicircular canal stimulation alone, and no sensation of motion or slow-phase eye movement resulting from cochlear stimulation alone. However, interleaved cochlear stimulation did produce changes in the slow-phase eye velocities elicited by electrical stimulation. Similarly, interleaved semicircular canal stimulation did elicit changes in the perceived pitch and loudness resulting from stimulation at multiple sites in the cochlea. Conclusions: There are significant interactions between different sensory modalities during stimulation with a combined vestibular and cochlear prosthesis. Such interactions present potential challenges for stimulation strategies to simultaneously restore auditory and vestibular function with such an implant.


2019 ◽  
Vol 146 ◽  
pp. 111740 ◽  
Author(s):  
Hong Sun ◽  
Fujun Yao ◽  
Xiao-Feng Kang
Keyword(s):  

2019 ◽  
Vol 13 ◽  
Author(s):  
Sol De Jesus ◽  
Michael S. Okun ◽  
Kelly D. Foote ◽  
Daniel Martinez-Ramirez ◽  
Jaimie A. Roper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document