scholarly journals Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for large-scale dynamics

2020 ◽  
Vol 1 (1) ◽  
pp. 127-153 ◽  
Author(s):  
Annika Oertel ◽  
Maxi Boettcher ◽  
Hanna Joos ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones. They can influence large-scale flow evolution by modifying the potential vorticity (PV) distribution during their cross-isentropic ascent. Although WCBs are typically described as slantwise-ascending and stratiform-cloud-producing airstreams, recent studies identified convective activity embedded within the large-scale WCB cloud band. However, the impacts of this WCB-embedded convection have not been investigated in detail. In this study, we systematically analyze the influence of embedded convection in an eastern North Atlantic WCB on the cloud and precipitation structure, on the PV distribution, and on larger-scale flow. For this reason, we apply online trajectories in a high-resolution convection-permitting simulation and perform a composite analysis to compare quasi-vertically ascending convective WCB trajectories with typical slantwise-ascending WCB trajectories. We find that the convective WCB ascent leads to substantially stronger surface precipitation and the formation of graupel in the middle to upper troposphere, which is absent for the slantwise WCB category, indicating the key role of WCB-embedded convection for precipitation extremes. Compared to the slantwise WCB trajectories, the initial equivalent potential temperature of the convective WCB trajectories is higher, and the convective WCB trajectories originate from a region of larger potential instability, which gives rise to more intense cloud diabatic heating and stronger cross-isentropic ascent. Moreover, the signature of embedded convection is distinctly imprinted in the PV structure. The diabatically generated low-level positive PV anomalies, associated with a cyclonic circulation anomaly, are substantially stronger for the convective WCB trajectories. The slantwise WCB trajectories lead to the formation of a widespread region of low-PV air (that still have weakly positive PV values) in the upper troposphere, in agreement with previous studies. In contrast, the convective WCB trajectories form mesoscale horizontal PV dipoles at upper levels, with one pole reaching negative PV values. On a larger scale, these individual mesoscale PV anomalies can aggregate to elongated PV dipole bands extending from the convective updraft region, which are associated with coherent larger-scale circulation anomalies. An illustrative example of such a convectively generated PV dipole band shows that within around 10 h the negative PV pole is advected closer to the upper-level waveguide, where it strengthens the isentropic PV gradient and contributes to the formation of a jet streak. This suggests that the mesoscale PV anomalies produced by embedded convection upstream organize and persist for several hours and therefore can influence the synoptic-scale circulation. They thus can be dynamically relevant, influence the jet stream and (potentially) the downstream flow evolution, which are highly relevant aspects for medium-range weather forecast. Finally, our results imply that a distinction between slantwise and convective WCB trajectories is meaningful because the convective WCB trajectories are characterized by distinct properties.

2019 ◽  
Author(s):  
Annika Oertel ◽  
Maxi Boettcher ◽  
Hanna Joos ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones. They can influence the large-scale flow evolution due to the modification of the potential vorticity (PV) distribution during their cross-isentropic ascent. Although WCBs are typically described as slantwise ascending and stratiform cloud producing airstreams, recent studies identified convective activity embedded within the large-scale WCB cloud band. Yet, the impacts of this WCB-embedded convection have not been investigated in detail. In this study, we systematically analyse the influence of embedded convection in an eastern North Atlantic WCB on the cloud and precipitation structure, on the PV distribution, and on the larger-scale flow. For this, we apply online trajectories in a high-resolution convection-permitting simulation and perform a composite analysis to compare quasi-vertically ascending convective WCB trajectories with typical slantwise ascending WCB trajectories. We find that the convective WCB ascent leads to stronger surface precipitation including the formation of graupel, which is absent for the slantwise WCB category, indicating the key role of WCB-embedded convection for precipitation extremes. Compared to the slantwise WCB trajectories, the initial equivalent potential temperature of the convective WCB trajectories is higher and they originate from a region of larger potential instability, which gives rise to more intense cloud diabatic processes and stronger cross-isentropic ascent. Moreover, the signature of embedded convection is distinctly imprinted in the PV structure. The diabatically generated low-level positive PV anomalies, associated with a cyclonic circulation anomaly, are substantially stronger for the convective WCB trajectories. While the slantwise WCB trajectories form a wide-spread negative PV anomaly (but still with weakly positive PV values) in the upper troposphere, in agreement with previous studies, the convective WCB trajectories, in contrast, form mesoscale horizontal PV dipoles at upper levels, with one pole reaching negative PV. On the larger-scale, these individual mesoscale PV anomalies can aggregate to elongated PV dipole bands extending from the convective updraft region, which are associated with coherent larger-scale circulation anomalies. An illustrative example of such a convectively generated PV dipole band shows that within around 10 hours the negative PV pole is advected closer to the upper-level waveguide, where it strengthens the isentropic PV gradient and contributes to the formation of a jet streak. This suggests that the mesoscale PV anomalies produced by embedded convection upstream organise and persist for several hours, and therefore can influence the synoptic-scale circulation. They thus can be dynamically relevant. Finally, our results imply that a distinction between slantwise and convective WCB trajectories is meaningful because the convective WCB trajectories are characterized by distinct properties, such as the formation of graupel and of an upper-level PV dipole, which are absent for slantwise WCB trajectories.


2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


2017 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in-situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System, www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS) for the period 1995 to 2012 in different geographical regions and vertical layers of the UTLS. The largest amount of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium Range Weather Forecast (ECMWF) ERA-Interim reanalysis, where a significant (95 % confidence) temperature increase of +0.56 K/decade is obtained. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature bias between observation and model data over the studied period. This study demonstrates the value of the IAGOS temperature observations as anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


2014 ◽  
Vol 27 (1) ◽  
pp. 3-26 ◽  
Author(s):  
Erica Madonna ◽  
Heini Wernli ◽  
Hanna Joos ◽  
Olivia Martius

Abstract A global climatology of warm conveyor belts (WCBs) is presented for the years 1979–2010, based on trajectories calculated with Interim ECMWF Re-Analysis (ERA-Interim) data. WCB trajectories are identified as strongly ascending air parcels (600 hPa in 2 days) near extratropical cyclones. Corroborating earlier studies, WCBs are more frequent during winter than summer and they ascend preferentially in the western ocean basins between 25° and 50° latitude. Before ascending, WCB trajectories typically approach from the subtropics in summer and from more midlatitude regions in winter. Considering humidity, cloud water, and potential temperature along WCBs confirms that they experience strong condensation and integrated latent heating during the ascent (typically >20 K). Liquid and ice water contents along WCBs peak at about 700 and 550 hPa, respectively. The mean potential vorticity (PV) evolution shows typical tropospheric values near 900 hPa, followed by an increase to almost 1 potential vorticity unit (PVU) at 700 hPa, and a decrease to less than 0.5 PVU at 300 hPa. These low PV values in the upper troposphere constitute significant negative anomalies with amplitudes of 1–3 PVU, which can strongly influence the downstream flow. Considering the low-level diabatic PV production, (i) WCBs starting at low latitudes (<40°) are unlikely to attain high PV (due to weak planetary vorticity) although they exhibit the strongest latent heating, and (ii) for those ascending at higher latitudes, a strong vertical heating gradient and high absolute vorticity are both important. This study therefore provides climatological insight into the cloud diabatic formation of significant positive and negative PV anomalies in the extratropical lower and upper troposphere, respectively.


2019 ◽  
Vol 76 (1) ◽  
pp. 209-229 ◽  
Author(s):  
Patrick Duran ◽  
John Molinari

Abstract Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.


2016 ◽  
Author(s):  
Ming Shangguan ◽  
Katja Matthes ◽  
Wuke Wang ◽  
Tae-Kwon Wee

Abstract. Water vapor is the most important greenhouse gas in the atmosphere with important implications not only for the Earth’s radiation and energy budget but also for various chemical, physical and dynamical processes in the stratosphere. The Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Radio Occultation (RO) dataset from 2007 through 2013 is used for the first time to study the distribution and variability water vapor in the upper troposphere and lower stratosphere (UTLS). The COSMIC data are compared to the Microwave Limb Sounder (MLS) data, and to two global reanalyses: The Modern-Era Retrospective analysis for Research and Application (MERRA) of the National Aeronautics and Space Administration (NASA); and, the latest reanalysis of the European Center for Medium-range Weather Forecast (ECMWF), the ERA-Interim. The MLS data have been assimilated into the MERRA, whereas the COSMIC data are used for the ERA-Interim. As a result, the MERRA agrees well with the MLS data and so does the ERA-Interim with the COSMIC data. While the monthly zonal mean distributions of water vapor from the four datasets show good agreements in northern mid-latitudes, large discrepancies exist in high southern latitudes and tropics. The MERRA shows overall a consistent seasonal cycle with MLS, but has too strong winter dehydration over the Antarctic, and is very weak in the interannual variations. The ERA-Interim fails to properly represent the winter dehydration over the Antarctic, and shows an unrealistic seasonal cycle in the tropical upper troposphere. The COSMIC data shows a good agreement with the MLS data except for the tropical "taper recorder" signal, where the COSMIC data suggest a faster upward motion than the MLS data. The COSMIC data are able to represent the moisture variabilities associated with the Quasi-Biennial Oscillation and the El Niño-Southern Oscillation.


2021 ◽  
Vol 893 (1) ◽  
pp. 012003
Author(s):  
R P Damayanti ◽  
N J Trilaksono ◽  
M R Abdillah

Abstract A vortex phenomenon may have a significant influence, especially on wind circulation patterns and extreme weather in Indonesia. The formation of the vortex, initially located over the eastern part of the Indian Ocean has drawn attention due to the highest frequency of its occurrence and as the source of the vortex over the Indonesian region. Vortices generated in this region is also suspected as one of contributing factor for flooding events at Jakarta in 2002 and 2007, studying both formation and development mechanism of these vortices is essential. The evolution of vortex development is investigated to characterize the vortex motion and development pattern in the Eastern Indian Ocean region. The study was conducted for 17 years starting from 1998 to 2016 on every December-January-February (DJF) period using ECMWF (European Center for Medium-Range Weather Forecast) ERA-Interim Reanalysis data. The analysis of vortex evolution was conducted for each event using a composite evolution of potential vorticity anomalies in the isentropic layer. The result shows 84 vortex systems identified with three characteristic patterns of vortex movement that occurred during 295 days of the observation period. Composite analysis of potential vorticity anomalies shows that the initial formation of vortices in the Eastern Indian Ocean is related to the emergence of negative potential vorticity anomalies from the west, which subsequently forming the vortices.


2019 ◽  
Author(s):  
Raphael Portmann ◽  
Juan Jesús González-Alemán ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Mediterranean tropical-like cyclones (Medicanes) can have high societal impact and their accurate forecast remains a challenge for numerical weather prediction models. They are often triggered by upper-level potential vorticity (PV) anomalies, such as PV streamers and cut-offs. But knowledge is incomplete about their detailed formation processes and factors limiting their predictability. This study exploits a European Centre for Medium-Range Weather Forecast (ECMWF) operational ensemble forecast with an uncertain PV streamer over the Mediterranean, which, three days after initialisation, resulted in an uncertain development of Medicane Zorbas in September 2018. Using an ad-hoc clustering of the ensemble members according to the PV streamer position, it is demonstrated that uncertainty in the initial conditions near an upper-level jet streak over the Gulf of Saint Lawrence is the dominant source of the subsequent uncertainty in the position of the PV streamer over the Mediterranean. The initial condition uncertainty strongly amplifies baroclinically after 18 h in a region of strong quasi-geostrophic forcing for ascent in the left exit of a jet streak over the North Atlantic. The further amplification and downstream propagation of the tropopause-level PV uncertainty leads to a large spread in the position of the PV streamer over the Mediterranean after three days, directly limiting the predictability of the position, thermal structure and evolution of Zorbas. Two low-level airstreams possibly play a key role in linking the uncertainties of the large-scale upper-level flow with meso-scale uncertainties in the cyclone structure. Overall, this study is an illustrative example that uncertainties in large-scale initial conditions can determine the practical predictability limits of a high-impact weather event.


2005 ◽  
Vol 5 (6) ◽  
pp. 1473-1488 ◽  
Author(s):  
T. Schmidt ◽  
S. Heise ◽  
J. Wickert ◽  
G. Beyerle ◽  
C. Reigber

Abstract. In this study the global lapse-rate tropopause (LRT) pressure, temperature, potential temperature, and sharpness are discussed based on Global Positioning System (GPS) radio occultations (RO) from the German CHAMP (CHAllenging Minisatellite Payload) and the U.S.-Argentinian SAC-C (Satelite de Aplicaciones Cientificas-C) satellite missions. Results with respect to seasonal variations are compared with operational radiosonde data and ECMWF (European Centre for Medium-Range Weather Forecast) operational analyses. Results on the tropical quasi-biennial oscillation (QBO) are updated from an earlier study. CHAMP RO data are available continuously since May 2001 with on average 150 high resolution temperature profiles per day. SAC-C data are available for several periods in 2001 and 2002. In this study temperature data from CHAMP for the period May 2001-December 2004 and SAC-C data from August 2001-October 2001 and March 2002-November 2002 were used, respectively. The bias between GPS RO temperature profiles and radiosonde data was found to be less than 1.5K between 300 and 10hPa with a standard deviation of 2-3K. Between 200-20hPa the bias is even less than 0.5K (2K standard deviation). The mean deviations based on 167699 comparisons between CHAMP/SAC-C and ECMWF LRT parameters are (-2.1±37.1)hPa for pressure and (0.1±4.2)K for temperature. Comparisons of LRT pressure and temperature between CHAMP and nearby radiosondes (13230) resulted in (5.8±19.8)hPa and (-0.1±3.3)K, respectively. The comparisons between CHAMP/SAC-C and ECMWF show on average the largest differences in the vicinity of the jet streams with up to 700m in LRT altitude and 3K in LRT temperature, respectively. The CHAMP mission generates the first long-term RO data set. Other satellite missions will follow (GRACE, COSMIC, MetOp, TerraSAR-X, EQUARS) generating together some thousand temperature profiles daily.


Sign in / Sign up

Export Citation Format

Share Document