scholarly journals Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 992
Author(s):  
Kendall Souder ◽  
Emma J. Beatty ◽  
Siena C. McGovern ◽  
Michael Whaby ◽  
Emily Young ◽  
...  

The phenoxazine dye resazurin exhibits bactericidal activity against the Gram-negative pathogens Francisella tularensis and Neisseria gonorrhoeae. One resazurin derivative, resorufin pentyl ether, significantly reduces vaginal colonization by Neisseria gonorrhoeae in a mouse model of infection. The narrow spectrum of bacteria susceptible to resazurin and its derivatives suggests these compounds have a novel mode of action. To identify potential targets of resazurin and mechanisms of resistance, we isolated mutants of F. tularensis subsp. holarctica live vaccine strain (LVS) exhibiting reduced susceptibility to resazurin and performed whole genome sequencing. The genes pilD (FTL_0959) and dipA (FTL_1306) were mutated in half of the 46 resazurin-resistant (RZR) strains sequenced. Complementation of select RZR LVS isolates with wild-type dipA or pilD partially restored sensitivity to resazurin. To further characterize the role of dipA and pilD in resazurin susceptibility, a dipA deletion mutant, ΔdipA, and pilD disruption mutant, FTL_0959d, were generated. Both mutants were less sensitive to killing by resazurin compared to wild-type LVS with phenotypes similar to the spontaneous resazurin-resistant mutants. This study identified a novel role for two genes dipA and pilD in F. tularensis susceptibility to resazurin.

2005 ◽  
Vol 73 (4) ◽  
pp. 2306-2311 ◽  
Author(s):  
Nathalie S. Duckett ◽  
Sofia Olmos ◽  
Douglas M. Durrant ◽  
Dennis W. Metzger

ABSTRACT Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-γ) and IL-12 were strictly required for protection, since mice deficient in IFN-γ, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-γ-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8−/− mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-γ and CD8 T cells.


1995 ◽  
Vol 310 (3) ◽  
pp. 1021-1027 ◽  
Author(s):  
J F McCallum ◽  
A Wise ◽  
M A Grassie ◽  
A I Magee ◽  
F Guzzi ◽  
...  

Mutations of Cys-9 to serine, Cys-10 to serine and a combination of both alterations were produced in a cDNA encoding murine G11 alpha to potentially interfere with the ability of the expressed polypeptides to act as substrates for post-translational palmitoylation. Each of these mutants and the wild-type protein were expressed in simian COS-1 cells. Mutation of either cysteine-9 or cysteine-10 decreased the degree of palmitoylation of the protein by some 80% compared with the wild-type, while the double mutant totally failed to incorporate [3H]palmitate. By contrast, in all transfections the endogenously expressed simian G11 alpha incorporated [3H]palmitate to similar levels. Particulate and cytoplasmic fractions from these cells were subjected to SDS/PAGE under conditions which allow resolution of primate and rodent forms of G11 alpha. Immunoblotting of these fractions demonstrated that in all cases the endogenously expressed simian G11 alpha was exclusively associated with the particulate fraction, as was the transfected and expressed wild-type murine G11 alpha. By contrast, each of the mutated forms of murine G11 alpha displayed a distribution in which approx. 70% of the expressed protein was present in the particulate fraction and 30% in the supernatant. To examine the conformation of the particulate expressed forms of murine G11 alpha, these fractions were treated with various concentrations of sodium cholate and immunoblots were subsequently performed on the solubilized and remaining particulate proteins. Whereas essentially all of the endogenous simian G11 alpha was solubilized by treatment with 1% (w/v) sodium cholate and some 50% with 0.32% cholate, expressed wild-type murine G11 alpha was more recalcitrant to solubilization. However, that fraction of wild-type murine G11 alpha which was solubilized behaved identically to the endogenous simian G11 alpha on Superose-12 gel-exclusion chromatography. The particulate fraction of the C9S/C10S double mutant of murine G11 alpha was highly resistant to solubilization by sodium cholate, whereas the particulate fractions of the two single cysteine to serine mutants were intermediate to the wild-type and double mutant in their ability to be solubilized by this detergent. These data demonstrate that the palmitoylation status of the cysteine residues at positions 9 and 10 in murine G11 alpha plays a central role in defining membrane association of this G-protein and indicate that much of the particulate fraction of the expressed palmitoylation-resistant mutants is likely to represent non-functional rather than correctly folded protein.(ABSTRACT TRUNCATED AT 400 WORDS)


2010 ◽  
Vol 78 (12) ◽  
pp. 5022-5032 ◽  
Author(s):  
Brittany L. Mortensen ◽  
James R. Fuller ◽  
Sharon Taft-Benz ◽  
Todd M. Kijek ◽  
Cheryl N. Miller ◽  
...  

ABSTRACT Francisella tularensis is a highly virulent Gram-negative bacterium and is the etiological agent of the disease tularemia. IclR, a presumed transcriptional regulator, is required for full virulence of the animal pathogen, F. tularensis subspecies novicida U112 (53). In this study, we investigated the contribution of IclR to the intracellular growth, virulence, and gene regulation of human pathogenic F. tularensis subspecies. Deletion of iclR from the live vaccine strain (LVS) and SchuS4 strain of F. tularensis subsp. holarctica and F. tularensis subsp. tularensis, respectively, did not affect their abilities to replicate within macrophages or epithelial cells. In contrast to F. tularensis subsp. novicida iclR mutants, LVS and SchuS4 ΔiclR strains were as virulent as their wild-type parental strains in intranasal inoculation mouse models of tularemia. Furthermore, wild-type LVS and LVSΔiclR were equally cytotoxic and induced equivalent levels of interleukin-1β expression by infected bone marrow-derived macrophages. Microarray analysis revealed that the relative expression of a limited number of genes differed significantly between LVS wild-type and ΔiclR strains. Interestingly, many of the identified genes were disrupted in LVS and SchuS4 but not in their corresponding F. tularensis subsp. novicida U112 homologs. Thus, despite the impact of iclR deletion on gene expression, and in contrast to the effects of iclR deletion on F. tularensis subsp. novicida virulence, IclR does not contribute significantly to the virulence or pathogenesis of F. tularensis LVS or SchuS4.


2004 ◽  
Vol 48 (8) ◽  
pp. 3203-3206 ◽  
Author(s):  
George A. Jacoby ◽  
Debra M. Mills ◽  
Nancy Chow

ABSTRACT High-level resistance to ertapenem was produced by β-lactamases of groups 1, 2f, and 3 in a strain of Klebsiella pneumoniae deficient in Omp35 and Omp36. From a wild-type strain producing ACT-1 β-lactamase, ertapenem-resistant mutants for which the ertapenem MICs were up to 128 μg/ml and expression of outer membrane proteins was diminished could be selected.


2012 ◽  
Vol 81 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Tyler K. Ulland ◽  
Ann M. Janowski ◽  
Blake W. Buchan ◽  
Matthew Faron ◽  
Suzanne L. Cassel ◽  
...  

Francisella tularensisis a Gram-negative bacterium and the causative agent of the disease tularemia. Escape ofF. tularensisfrom the phagosome into the cytosol of the macrophage triggers the activation of the AIM2 inflammasome through a mechanism that is not well understood. Activation of the AIM2 inflammasome results in autocatalytic cleavage of caspase-1, resulting in the processing and secretion of interleukin-1β (IL-1β) and IL-18, which play a crucial role in innate immune responses toF. tularensis. We have identified the5-formyltetrahydrofolate cycloligasegene (FTL_0724) as being important forF. tularensislive vaccine strain (LVS) virulence. Infection of micein vivowith aF. tularensisLVSFTL_0724mutant resulted in diminished mortality compared to infection of mice with wild-type LVS. TheFTL_0724mutant also induced increased inflammasome-dependent IL-1β and IL-18 secretion and cytotoxicity in macrophagesin vitro. In contrast, infection of macrophages with aF. tularensisLVSrluD pseudouridine synthase(FTL_0699) mutant resulted in diminished IL-1β and IL-18 secretion from macrophagesin vitrocompared to infection of macrophages with wild-type LVS. In addition, theFTL_0699mutant was not attenuatedin vivo. These findings further illustrate thatF. tularensisLVS possesses numerous genes that influence its ability to activate the inflammasome, which is a key host strategy to control infection with this pathogenin vivo.


2020 ◽  
Vol 8 (10) ◽  
pp. 1531
Author(s):  
Ina Kelava ◽  
Mirna Mihelčić ◽  
Mateja Ožanič ◽  
Valentina Marečić ◽  
Maša Knežević ◽  
...  

Francisella tularensis is a highly virulent intracellular pathogen that proliferates within various cell types and can infect a multitude of animal species. Francisella escapes the phagosome rapidly after infection and reaches the host cell cytosol where bacteria undergo extensive replication. Once cytosolic, Francisella becomes a target of an autophagy-mediated process. The mechanisms by which autophagy plays a role in replication of this cytosolic pathogen have not been fully elucidated. In vitro, F. tularensis avoids degradation via autophagy and the autophagy process provides nutrients that support its intracellular replication, but the role of autophagy in vivo is unknown. Here, we investigated the role of autophagy in the pathogenesis of tularemia by using transgenic mice deficient in Atg5 in the myeloid lineage. The infection of Atg5-deficient mice with Francisella tularensis subsp. holarctica live vaccine strain (LVS) resulted in increased survival, significantly reduced bacterial burden in the mouse organs, and less severe histopathological changes in the spleen, liver and lung tissues. The data highlight the contribution of Atg5 in the pathogenesis of tularemia in vivo.


2008 ◽  
Vol 53 (3) ◽  
pp. 1061-1066 ◽  
Author(s):  
Angela M. Starks ◽  
Aysel Gumusboga ◽  
Bonnie B. Plikaytis ◽  
Thomas M. Shinnick ◽  
James E. Posey

ABSTRACT Ethambutol resistance in clinical Mycobacterium tuberculosis isolates is associated primarily with missense mutations in the embB gene. However, recent reports have described the presence of embB mutations, especially those at embB codon 306, in isolates susceptible to ethambutol. To clarify the role of embB mutations in ethambutol resistance, we sequenced the ethambutol resistance-determining region in spontaneous ethambutol-resistant mutants. In our study, 66% of spontaneous mutants contained a single point mutation in embB, with 55% of these occurring at embB 306. The MIC of ethambutol for spontaneous mutants was increased two- to eightfold relative to the pansusceptible M. tuberculosis strains from which the mutants were generated. To further characterize the role of embB 306 mutations, we directly introduced mutant alleles, embB(M306V) or embB(M306I), into pansusceptible M. tuberculosis strains and conversely reverted mutant alleles in spontaneous ethambutol-resistant mutants back to those of the wild type via allelic exchange using specialized linkage transduction. We determined that the MIC of ethambutol was reduced fourfold for three of the four spontaneous ethambutol-resistant embB 306 mutants when the mutant allele was replaced with the wild-type embB allele. The MIC for one of the spontaneous mutants genetically reverted to wild-type embB was reduced by only twofold. When the wild-type embB allele was converted to the mutant allele embB(M306V), the ethambutol MIC was increased fourfold, and when the allele was changed to M306I, the ethambutol MIC increased twofold. Our data indicate that embB 306 mutations are sufficient to confer ethambutol resistance, and detection of these mutations should be considered in the development of rapid molecular tests.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 166 ◽  
Author(s):  
Dmitry A. Maslov ◽  
Kirill V. Shur ◽  
Aleksey A. Vatlin ◽  
Valery N. Danilenko

The emergence and spread of drug-resistant Mycobacterium tuberculosis strains (including MDR, XDR, and TDR) force scientists worldwide to search for new anti-tuberculosis drugs. We have previously reported a number of imidazo[1,2-b][1,2,4,5]tetrazines – putative inhibitors of mycobacterial eukaryotic-type serine-threonine protein-kinases, active against M. tuberculosis. Whole genomic sequences of spontaneous drug-resistant M. smegmatis mutants revealed four genes possibly involved in imidazo[1,2-b][1,2,4,5]tetrazines resistance; however, the exact mechanism of resistance remain unknown. We used different approaches (construction of targeted mutants, overexpression of the wild-type (w.t.) and mutant genes, and gene-expression studies) to assess the role of the previously identified mutations. We show that mutations in MSMEG_1380 gene lead to overexpression of the mmpS5-mmpL5 operon in M. smegmatis, thus providing resistance to imidazo[1,2-b][1,2,4,5]tetrazines by increased efflux through the MmpS5-MmpL5 system, similarly to the mechanisms of resistance described for M. tuberculosis and M. abscessus. Mycobacterial MmpS5-MmpL5 transporters should be considered as an MDR-efflux system and they should be taken into account at early stages of anti-tuberculosis drug development.


2013 ◽  
Vol 81 (6) ◽  
pp. 2022-2027 ◽  
Author(s):  
Dennis W. Metzger ◽  
Sharon L. Salmon ◽  
Girish Kirimanjeswara

ABSTRACTWe investigated the role of interleukin-10 (IL-10) in cutaneous and pulmonary infection withFrancisella tularensis. We found that after intradermal challenge of mice with the live vaccine strain (LVS) ofF. tularensis, splenic IL-10 levels increased rapidly and reached a peak 5 days after infection. However, IL-10 expression after infection was detrimental, since IL-10−/−mice showed increased bacterial clearance and were resistant to an infectious dose (>106CFU/mouse) that was uniformly lethal for IL-10+/+mice. Furthermore, IL-10+/+mice treated with neutralizing anti-IL-10R monoclonal antibody were able to survive lethal cutaneous LVS challenge. The presence of IL-10 appeared to restrain the expression of IL-17, since high levels of splenic IL-17 were observed after intradermal LVS infection only in IL-10−/−mice. Furthermore, treatment with neutralizing anti-IL-17R antibody ablated the enhanced survival observed in IL-10−/−mice. However, neutralization of IL-10 activity in IL-17R−/−mice failed to provide protection. Thus, IL-10 suppresses a protective IL-17 response that is necessary for resistance to cutaneous LVS infection. Surprisingly, however, IL-10−/−mice were significantly more susceptible to pulmonary infection with LVS. Finally, although IL-10 is a critical and novel regulator of immunity toF. tularensisLVS infection, its effects were masked during infection with the highly virulent SchuS4 strain. Taken together, these findings suggest that differentially regulating expression of the IL-10 pathway in various tissues could ultimately have prophylactic and therapeutic benefits for protection against tularemia.


Sign in / Sign up

Export Citation Format

Share Document