Adaptive control to actively damp bistabilities in highly interrupted turning processes using a hardware-in-the-loop simulator

2021 ◽  
pp. 107754632110579
Author(s):  
Govind N. Sahu ◽  
Mohit Law ◽  
Pankaj Wahi

Interruptions in turning make the process forces non-smooth and nonlinear. Smooth nonlinear cutting forces result in the process of being stable for small perturbations and unstable for larger ones. Re-entry after interruptions acts as perturbations making the process exhibit bistabilities. Stability for such processes is characterized by Hopf bifurcations resulting in lobes and period-doubling bifurcations resulting in narrow unstable lenses. Interrupted turning remains an important technological problem, and since experimentation to investigate and mitigate instabilities are difficult, this paper instead emulates these phenomena on a controlled hardware-in-the-loop simulator. Emulated cutting on the simulator confirms that bistabilities persist with lobes and lenses. Cutting in bistable regimes should be avoided due to conditional stability. Hence, we demonstrate the use of active damping to stabilize cutting with interruptions/perturbations. To stabilize cutting with small/large perturbations, we successfully implement an adaptive gain tuning scheme that adapts the gain to the level of interruption/perturbation. To facilitate real-time detection of instabilities and their control, we characterize the efficacy of the updating scheme for its dependence on the time required to update the gain and for its dependence on the levels of gain increments. We observe that higher gain increments with shorter updating times result in the process being stabilized quicker. Such results are instructive for active damping of real processes exhibiting conditional instabilities prone to perturbations.

2003 ◽  
Vol 12 (04) ◽  
pp. 435-459 ◽  
Author(s):  
MAURO DI MARCO ◽  
MAURO FORTI ◽  
ALBERTO TESI

This paper further investigates a basic issue that has received attention in the recent literature, namely, the robustness of complete stability of standard Cellular Neural Networks (CNNs) with respect to small perturbations of the nominal symmetric interconnections. More specifically, a class of third-order CNNs with a nominal symmetric interconnection matrix is considered, and the Harmonic Balance (HB) method is exploited for addressing the possible existence of period-doubling bifurcations, and complex dynamics, for small perturbations of the nominal interconnections. The main result is that there are indeed parameter sets close to symmetry for which period-doubling bifurcations are predicted by the HB method. Moreover, the predictions are found to be reliable and accurate by means of computer simulations.


2010 ◽  
Vol 6 (S271) ◽  
pp. 288-296
Author(s):  
Laurène Jouve ◽  
Michael R. E. Proctor ◽  
Geoffroy Lesur

AbstractWe present the effects of introducing results of 3D MHD simulations of buoyant magnetic fields in the solar convection zone in 2D mean-field Babcock-Leighton models. In particular, we take into account the time delay introduced by the rise time of the toroidal structures from the base of the convection zone to the solar surface. We find that the delays produce large temporal modulation of the cycle amplitude even when strong and thus rapidly rising flux tubes are considered. The study of a reduced model reveals that aperiodic modulations of the solar cycle appear after a sequence of period doubling bifurcations typical of non-linear systems. We also discuss the memory of such systems and the conclusions which may be drawn concerning the actual solar cycle variability.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150147
Author(s):  
Yo Horikawa

The bifurcations and chaos in a system of two coupled sigmoidal neurons with periodic input are revisited. The system has no self-coupling and no inherent limit cycles in contrast to the previous studies and shows simple bifurcations qualitatively different from the previous results. A symmetric periodic solution generated by the periodic input underdoes a pitchfork bifurcation so that a pair of asymmetric periodic solutions is generated. A chaotic attractor is generated through a cascade of period-doubling bifurcations of the asymmetric periodic solutions. However, a symmetric periodic solution repeats saddle-node bifurcations many times and the bifurcations of periodic solutions become complicated as the output gain of neurons is increasing. Then, the analysis of border collision bifurcations is carried out by using a piecewise constant output function of neurons and a rectangular wave as periodic input. The saddle-node, the pitchfork and the period-doubling bifurcations in the coupled sigmoidal neurons are replaced by various kinds of border collision bifurcations in the coupled piecewise constant neurons. Qualitatively the same structure of the bifurcations of periodic solutions in the coupled sigmoidal neurons is derived analytically. Further, it is shown that another period-doubling route to chaos exists when the output function of neurons is asymmetric.


Author(s):  
Zhixiang Xu ◽  
Hideyuki Tamura

Abstract In this paper, a single-degree-of-freedom magnetic levitation dynamic system, whose spring is composed of a magnetic repulsive force, is numerically analyzed. The numerical results indicate that a body levitated by magnetic force shows many kinds of vibrations upon adjusting the system parameters (viz., damping, excitation amplitude and excitation frequency) when the system is excited by the harmonically moving base. For a suitable combination of parameters, an aperiodic vibration occurs after a sequence of period-doubling bifurcations. Typical aperiodic vibrations that occurred after period-doubling bifurcations from several initial states are identified as chaotic vibration and classified into two groups by examining their power spectra, Poincare maps, fractal dimension analyses, etc.


2018 ◽  
Vol 224 ◽  
pp. 02055
Author(s):  
Yuriy A. Gol’tsov ◽  
Alexander S. Kizhuk ◽  
Vasiliy G. Rubanov

The dynamic modes and bifurcations in a pulse control system of a heating unit, the condition of which is described through differential equations with discontinuous right–hand sides, have been studied. It has been shown that the system under research can demonstrate a great variety of nonlinear phenomena and bifurcation transitions, such as quasiperiodicity, multistable behaviour, chaotization of oscillations through a classical period–doubling bifurcations cascade and border–collision bifurcation.


2018 ◽  
Vol 28 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Yo Horikawa ◽  
Hiroyuki Kitajima ◽  
Haruna Matsushita

Bifurcations and chaos in a network of three identical sigmoidal neurons are examined. The network consists of a two-neuron oscillator of the Wilson–Cowan type and an additional third neuron, which has a simpler structure than chaotic neural networks in the previous studies. A codimension-two fold-pitchfork bifurcation connecting two periodic solutions exists, which is accompanied by the Neimark–Sacker bifurcation. A stable quasiperiodic solution is generated and Arnold’s tongues emanate from the locus of the Neimark–Sacker bifurcation in a two-dimensional parameter space. The merging, splitting and crossing of the Arnold tongues are observed. Further, multiple chaotic attractors are generated through cascades of period-doubling bifurcations of periodic solutions in the Arnold tongues. The chaotic attractors grow and are destroyed through crises. Transient chaos and crisis-induced intermittency due to the crises are also observed. These quasiperiodic solutions and chaotic attractors are robust to small asymmetry in the output function of neurons.


2020 ◽  
Vol 32 (20) ◽  
pp. 1311-1314
Author(s):  
Defeng Zou ◽  
Yajing Zhang ◽  
Youjian Song ◽  
Minglie Hu

Sign in / Sign up

Export Citation Format

Share Document