scholarly journals Synthesis, Mesomorphic, and Solar Energy Characterizations of New Non-Symmetrical Schiff Base Systems

2021 ◽  
Vol 9 ◽  
Author(s):  
Fowzia S. Alamro ◽  
Hoda A. Ahmed ◽  
Sobhi M. Gomha ◽  
Mohamed Shaban

New asymmetrical Schiff base series based on lateral methoxy group in a central core, (E)-3-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenyl 4-alkoxybenzoate (An), were synthesized and their optical and mesomorphic characteristics were investigated. The lateral OCH3group was inserted in the central ring in ortho position with respect to the azomethine linkage. FT-IR, and NMR spectroscopy as well as elemental analyses were used to elucidate their molecular structures. Their mesomorphic behaviors were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). These examinations indicated that all the designed series were monomorphic and possessed nematic (N) mesophase enantiotropically, except A12 derivative which exhibited monotropic N phase. A comparative study was made between the present investigated series (An) and their corresponding isomers (Bn). The results revealed that the kind and stability of the mesophase as well as its temperature range are affected by the location and special orientation of the lateral methoxy group electric-resistance, conductance, energy-gap, and Urbach-energy were also reported for the present investigated An series. These results revealed that all electrodes exhibit Ohmic properties and electric-resistances in the GΩ range, whereas the electric resistance was decreased from 221.04 to 44.83 GΩ by lengthening the terminal alkoxy-chain to n = 12. The band gap of the An series was reduced from 3.43 to 2.89 eV by increasing the terminal chain length from n = 6 to n = 12 carbons. Therefore, controlling the length of the terminal chain can be used to improve the An series’ electric conductivity and optical absorption, making it suitable for solar energy applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fowzia S. Alamro ◽  
Sobhi M. Gomha ◽  
Mohamed Shaban ◽  
Abeer S. Altowyan ◽  
Tariq Z. Abolibda ◽  
...  

AbstractNew homologues series of liquid crystalline materials namely, (E)-3-methoxy-4-[(p-tolylimino)methyl]phenyl 4-alkloxybenzoates (I-n), were designed and evaluated for their mesomorphic and optical behavior. The prepared series constitutes three members that differ from each other by the terminally attached alkoxy chain group, these vary between 6 and 12 carbons. A laterally OCH3 group is incorporated into the central benzene ring in meta position with respect to the ester moiety. Mesomorphic characterizations of the prepared derivatives are conducted using differential scanning-calorimetry (DSC), polarized optical-microscopy (POM). Molecular structures were elucidated by elemental analyses and NMR spectroscopy. DSC and POM investigations revealed that all the synthesized derivatives are purely nematogenic exhibiting only nematic (N) mesophase, except for the longest chain derivative (I-12) that is dimorphic possesses smectic A and N phases. Moreover, all members of the group have a wide mesomorphic range with high thermal nematic stability. A comparative study was established between the present derivative (I-6) and their previously prepared isomer. The results indicated that the location exchange of the polar compact group (CH3) influences the N mesophase stability and range. The electrical measurements revealed that all synthesized series I-n show Ohmic behaviors with effective electric resistances in the GΩ range. Under white light illumination, the effective electric conductivity for the compound I-8 is five times that obtained in dark conditions. This derivative also showed two direct optical band gaps in the UV and visible light range. In addition, I-6 has band energy gaps of values 1.07 and 2.79 eV, which are suitable for solar energy applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fowzia S. Alamro ◽  
Sobhi M. Gomha ◽  
Mohamed Shaban ◽  
Abeer S. Altowyan ◽  
Tariq Z. Abolibda ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 551
Author(s):  
Laila Ahmed. Al-Mutabagani ◽  
Latifah A. Alshabanah ◽  
Sobhi M. Gomha ◽  
Hoda A. Ahmed

New laterally OCH3-substituted optical organic Schiff base/ester series, namely 4-(4-(hexyloxyphenyl)iminomethyl)-3-methoxyphenyl 4-alkoxybenzoates, were prepared and characterized with different thermal, mesomorphic, and photoactive techniques. The prepared group constitutes five homologues that differ from each other in the number of carbons in the terminal alkoxy chain (n), which varies between n = 6, 8, 10, 12, and 16 carbons. The laterally protruded methoxy group is attached to the central benzene ring that makes an angle of 120° with the molecular long axis. Molecular structures of all newly prepared homologues were fully elucidated via FT-IR, 1H and 13C NMR spectroscopy. Mesomorphic transitions were determined via differential scanning calorimetry (DSC) and the phases identified by polarized optical microscopy (POM). Independent of the length of the terminal alkoxy chain attached to phenyl ester ring, only a monomorphic nematic (N) phase was observed for all the synthesized compounds. A comparative study was made between the present lateral methoxy-substituted homologues and their corresponding laterally-neat analogues. The results revealed that, depending on the length of the alkoxy chain and the presence or absence of the lateral methoxy group, different mesophases with different thermal stability and temperature ranges were observed. Finally, UV-vis spectra showed that the present nematogenic series possess photoactive properties that are of importance for many applications.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2587
Author(s):  
Salma A. Al-Zahrani ◽  
Hoda A. Ahmed ◽  
Mohamed A. El-atawy ◽  
Khulood A. Abu Al-Ola ◽  
Alaa Z. Omar

Four new non-symmetrical derivatives based on central naphthalene moiety, 4-((4–(alkoxy)phenyl) diazenyl)naphthalen–1–yl 4–substitutedbenzoate (In/x), were prepared, and their properties were investigated experimentally and theoretically. The synthesized materials bear two wing groups: an alkoxy chain of differing proportionate length (n = 6 and 16 carbons) and one terminal attached to a polar group, X. Their molecular structures were elucidated via elemental analyses and FT-IR and NMR spectroscopy. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were carried out to evaluate their mesomorphic properties. The results of the experimental investigations revealed that all the synthesized analogues possess only an enantiotropic nematic (N) mesophase with a high thermal stability and broad range. Density functional theory (DFT) calculations were in accordance with the experimental investigations and revealed that all prepared materials are to be linear and planar. Moreover, the rigidity of the molecule increased when an extra fused ring was inserted into the center of the structural shape, so its thermal and geometrical parameters were affected. Energy gap predictions confirmed that the I16/c derivative is more reactive than other compounds.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3032 ◽  
Author(s):  
Sherif Nafee ◽  
Mohamed Hagar ◽  
Hoda Ahmed ◽  
Reda El-Shishtawy ◽  
Bahaaudin Raffah

A Schiff base supramolecular 4-[(4-(hexyloxy)phenylimino)methyl]benzoic acid and a new series of Schiff base/ester linkages named 4-substitutedphenyl 4-[(4-(hexyloxy)phenylimino)methyl]benzoate liquid crystals were synthesized. The thermal stability, mesomorphic, and optical behavior of the prepared compounds were characterized by differential scanning calorimetry (DSC), Thermogravemetric analysis (TGA), polarized optical microscopy (POM), and UV spectroscopy. FT-IR, 1H-NMR, 13C-NMR, and elemental analyses were carried out to elucidate and confirm the molecular structures of the synthesized compounds. The investigated series comprising different sized terminal polar groups changed between CH(CH3)2, H, I, and F. It was found that the supramolecular imino acid dimer is enantiotropic dimorphic, with a wide SmA phase and a good N phase range. The other series of terminally substituted Schiff base/esters are mesomorphic with a high thermal stable SmA phase, except the iodo derivative, which showed dimorphic SmA and N phases. The effect of the position and the orientation of the cores, as well as the terminal substituent of the type and the stability of the mesophase, were studied. A computational theoretical study of the effects of the van der Waal’s volume, the Hammett substituent coefficient, the inductive sigma constant, and other geometrical parameters were discussed. The study revealed that the planarity of the two phenyl rings attached with an imino linking group impacted the resonance effect of the terminal substituents rather than their inductive effect. A detailed study on the effect of the estimated thermal parameters, as well as their geometrical planarity with the type and stability of the formed mesophase, was discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sobhi M. Gomha ◽  
Hoda A. Ahmed ◽  
Mohamed Shaban ◽  
Tariq Z. Abolibda ◽  
Khalid Abdulaziz Alharbi ◽  
...  

AbstractNew conical-shaped geometrical supramolecular H-bonded liquid crystal complexes were formed through 1:2 intermolecular interactions of H-bonding between flexible core (adipic acid, A) and lateral chloro-substituted azopyridines (Bn). The chains of the terminally alkoxy substituted base (n) were changed between 8 and 16 carbons. Mesomorphic and optical examinations of the prepared complexes were measured via differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Fourier-transform infrared spectroscopy (FT-IR) was used to confirm the Fermi bands of the H- bonding interactions. Induced nematogenic mesophases that cover the whole lengths of alkoxy-chains were detected. The non-linear geometries of the designed supramolecular complexes were also confirmed via Density functional theory (DFT) calculations. It was found that the length of terminal alkoxy chain of the base moiety highly affects the geometrical structure of the investigated complexes. Moreover, it increases the thermodynamic energy and influences the geometrical parameters. The electrical properties of each of the acid component (A), the base (B16) and their 1:2 complex (A/2B16) were evaluated using the Keithley measurement-source unit. The optical properties studies showed that the influences in the optical absorption and the reduction of the energy gap of the complex compared to its individual components made the resulted supramolecular H-bonded complex soft material suitable for solar energy investigations.


Author(s):  
B. Khadambari ◽  
S. S. Bhattacharya

Solar has become one of the fastest growing renewable energy sources. With the push towards sustainability it is an excellent solution to resolve the issue of our diminishing finite resources. Alternative photovoltaic systems are of much importance to utilize solar energy efficiently. The Cu-chalcopyrite compounds CuInS2 and CuInSe2 and their alloys provide absorber material of high absorption coefficients of the order of 105 cm-1. Cu2ZnSnS4 (CZTS) is more promising material for photovoltaic applications as Zn and Sn are abundant materials of earth’s crust. Further, the preparation of CZTS-ink facilitates the production of flexible solar cells. The device can be designed with Al doped ZnO as the front contact, n-type window layer (e.g. intrinsic ZnO); an n-type thin film buffer layer (e.g. CdS) and a p-type CZTS absorber layer with Molybdenum (Mo) substrate as back contact. In this study, CZTS films were synthesized by a non-vaccum solvent based process technique from a molecular-ink using a non toxic eco-friendly solvent dimethyl sulfoxide (DMSO). The deposited CZTS films were optimized and characterized by XRD, UV-visible spectroscopy and SEM.


2020 ◽  
Vol 75 (9-10) ◽  
pp. 851-857
Author(s):  
Chong Chen ◽  
Fule Wu ◽  
Jiao Ji ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractTreatment of [(η6-p-cymene)RuCl2]2 with one equivalent of chlorodiphenylphosphine in tetrahydrofuran at reflux afforded a neutral complex [(η6-p-cymene)RuCl2(κ1-P-PPh2OH)] (1). Similarly, the reaction of [Ru(bpy)2Cl2·2H2O] (bpy = 2,2′-bipyridine) and chlorodiphenylphosphine in methanol gave a cationic complex [Ru(bpy)2Cl(κ1-P-PPh2OCH3)](PF6) (2), while treatment of [RuCl2(PPh3)3] with [2-(C5H4N)CH=N(CH2)2N(CH3)2] (L1) in tetrahydrofuran at room temperature afforded a ruthenium(II) complex [Ru(PPh3)Cl2(κ3-N,N,N-L1)] (3). Interaction of the chloro-bridged complex [Ru(CO)2Cl2]n with one equivalent of [Ph2P(o-C6H4)CH=N(CH2)2N(CH3)2] (L2) led to the isolation of [Ru(CO)Cl2(κ3-P,N,N-L2)] (4). The molecular structures of the ruthenium(II) complexes 1–4 have been determined by single-crystal X-ray crystallography. The properties of the ruthenium(II) complex 4 as a hydrogenation catalyst for acetophenone were also tested.


AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055214
Author(s):  
A. Kosinska ◽  
B. V. Balakin ◽  
P. Kosinski

Sign in / Sign up

Export Citation Format

Share Document