kosteletzkya virginica
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Liu ◽  
Lizi Zhao ◽  
Jianzhao Li ◽  
Lijun Duan ◽  
Kai Zhang ◽  
...  

Small heat shock proteins (sHSPs) are a group of chaperone proteins existed in all organisms. The functions of sHSPs in heat and abiotic stress responses in many glycophyte plants have been studied. However, their possible roles in halophyte plants are still largely known. In this work, a putative sHSP gene KvHSP26 was cloned from K. virginica. Bioinformatics analyses revealed that KvHSP26 encoded a chloroplastic protein with the typical features of sHSPs. Amino acid sequence alignment and phylogenetic analysis demonstrated that KvHSP26 shared 30%-77% homology with other sHSPs from Arabidopsis, cotton, durian, salvia, and soybean. Quantitative real-time PCR (qPCR) assays exhibited that KvHSP26 was constitutively expressed in different tissues such as leaves, stems, and roots, with a relatively higher expression in leaves. Furthermore, expression of KvHSP26 was strongly induced by salt, heat, osmotic stress, and ABA in K. virginica. All these results suggest that KvHSP26 encodes a new sHSP, which is involved in multiple abiotic stress responses in K. virginica, and it has a great potential to be used as a candidate gene for the breeding of plants with improved tolerances to various abiotic stresses.


2020 ◽  
Vol 31 (6) ◽  
pp. 773-782
Author(s):  
Xiaoli Tang ◽  
Hongbo Shao ◽  
Fudong Jiang ◽  
Mohamed Salah Amr Sheteiwy ◽  
Ruiping Yang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaohua Liu ◽  
Jieshan Cheng ◽  
Fudong Jiang ◽  
Meixia Liang ◽  
Junjie Han ◽  
...  

In higher plants, aquaporin proteins (AQPs) play important roles in the uptake of water across cell membranes. However, their functions in halophytes are still largely unknown. In this work, we isolated, cloned, and identified KvTIP3, a tonoplast intrinsic protein gene from Kosteletzkya virginica. Bioinformatic analyses demonstrated that KvTIP3 encoded a tonoplast protein with the common properties of AQPs. Further multiple sequence alignment and phylogenetic analyses showed that KvTIP3 shared 65%–82% homology with other AQPs from Arabidopsis, cotton, polar, and cocoa. Quantitative real-time PCR (qPCR) analyses revealed that KvTIP3 was ubiquitously expressed in various tissues such as leaves, stems, and roots, with a predominant expression in roots. In addition, KvTIP3 transcript was strongly induced by NaCl, low temperature, and ABA in K. virginica. Our findings suggest that KvTIP3 encodes a new AQP possibly involved in multiple abiotic stress responses in K. virginica, and KvTIP3 could be used as a potential candidate gene for the improvement of plants resistant to various abiotic stresses.


2016 ◽  
Vol 52 (2) ◽  
pp. 356-358 ◽  
Author(s):  
Xuwei Gu ◽  
Bai Bai ◽  
Yu Chen ◽  
Ming Wang ◽  
Yunfa Dong ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Liye Chu ◽  
Hongbo Shao

The LEA proteins are a kind of hydrophilic proteins, playing main functions in desiccation tolerance. However, their importance as a kind of stress proteins in abiotic stress is being clarified little by little. In this study we isolated, cloned, and identified the firstKvLEAgene inKosteletzkya virginica. Bioinformatic analysis showed that the protein encoded by this gene had common properties of LEA proteins and the multiple sequences alignment and phylogenetic analysis further showed that this protein had high homology with twoArabidopsisLEA proteins. Gene expression analysis revealed that this gene had a higher expression in root and it was induced obviously by salt stress. Moreover, the transcripts ofKvLEAwere also induced by other abiotic stresses including drought, high temperature, chilling, and ABA treatment. Among these abiotic stresses, ABA treatment brought about the biggest changes to this gene. Collectively, our research discovered a novel LEA gene and uncovered its involvement in multiabiotic stresses inK. virginica. This research not only enriched studies on LEA gene in plant but also would accelerate more studies onK. virginicain the future.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124421 ◽  
Author(s):  
Xiaoli Tang ◽  
Hongyan Wang ◽  
Chuyang Shao ◽  
Hongbo Shao

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hongyan Wang ◽  
Xiaoli Tang ◽  
Honglei Wang ◽  
Hongbo Shao

Effects of salinity on growth and physiological indices ofKosteletzkya virginicaseedlings were studied. Plant height, fresh weight (FW), dry weight (DW), and net photosynthetic rate (Pn) increased at 100 mM NaCl and slightly declined at 200 mM, but higher salinity induced a significant reduction. Chlorophyll content, stomatal conductance (Gs), intercellular CO2concentration (Ci), and transpiration rate (E) were not affected under moderate salinities, while markedly decreased at severe salinities except for the increasedCiat 400 mM NaCl. Furthermore, no significant differences ofFv/Fmand ΦPSII were found at lower than 200 mM NaCl, whereas higher salinity caused the declines ofFv/Fm, ΦPSII, and qP similar toPn, accompanied with higher NPQ. Besides, salt stress reduced the leaf RWC, but caused the accumulation of proline to alleviate osmotic pressure. The increased activities of antioxidant enzymes maintained the normal levels of MDA and relative membrane permeability. To sum up,Kosteletzkya virginicaseedlings have good salt tolerance and this may be partly attributed to its osmotic regulation and antioxidant capacity which help to maintain water balance and normal ROS level to ensure the efficient photosynthesis. These results provided important implications forKosteletzkya virginicaacting as a promising multiuse species for reclaiming coastal soil.


Sign in / Sign up

Export Citation Format

Share Document