scholarly journals The Chloroplastic Small Heat Shock Protein Gene KvHSP26 Is Induced by Various Abiotic Stresses in Kosteletzkya virginica

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Liu ◽  
Lizi Zhao ◽  
Jianzhao Li ◽  
Lijun Duan ◽  
Kai Zhang ◽  
...  

Small heat shock proteins (sHSPs) are a group of chaperone proteins existed in all organisms. The functions of sHSPs in heat and abiotic stress responses in many glycophyte plants have been studied. However, their possible roles in halophyte plants are still largely known. In this work, a putative sHSP gene KvHSP26 was cloned from K. virginica. Bioinformatics analyses revealed that KvHSP26 encoded a chloroplastic protein with the typical features of sHSPs. Amino acid sequence alignment and phylogenetic analysis demonstrated that KvHSP26 shared 30%-77% homology with other sHSPs from Arabidopsis, cotton, durian, salvia, and soybean. Quantitative real-time PCR (qPCR) assays exhibited that KvHSP26 was constitutively expressed in different tissues such as leaves, stems, and roots, with a relatively higher expression in leaves. Furthermore, expression of KvHSP26 was strongly induced by salt, heat, osmotic stress, and ABA in K. virginica. All these results suggest that KvHSP26 encodes a new sHSP, which is involved in multiple abiotic stress responses in K. virginica, and it has a great potential to be used as a candidate gene for the breeding of plants with improved tolerances to various abiotic stresses.


2020 ◽  
Vol 152 ◽  
pp. 112541 ◽  
Author(s):  
Valdir G. Neto ◽  
Rhaissa R. Barbosa ◽  
Maria G.A. Carosio ◽  
Antônio G. Ferreira ◽  
Luzimar G. Fernandez ◽  
...  


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Mingjia Tang ◽  
Liang Xu ◽  
Yan Wang ◽  
Wanwan Cheng ◽  
Xiaobo Luo ◽  
...  

Abstract Background Abiotic stresses due to climate change pose a great threat to crop production. Heat shock transcription factors (HSFs) are vital regulators that play key roles in protecting plants against various abiotic stresses. Therefore, the identification and characterization of HSFs is imperative to dissect the mechanism responsible for plant stress responses. Although the HSF gene family has been extensively studied in several plant species, its characterization, evolutionary history and expression patterns in the radish (Raphanus sativus L.) remain limited. Results In this study, 33 RsHSF genes were obtained from the radish genome, which were classified into three main groups based on HSF protein domain structure. Chromosomal localization analysis revealed that 28 of 33 RsHSF genes were located on nine chromosomes, and 10 duplicated RsHSF genes were grouped into eight gene pairs by whole genome duplication (WGD). Moreover, there were 23 or 9 pairs of orthologous HSFs were identified between radish and Arabidopsis or rice, respectively. Comparative analysis revealed a close relationship among radish, Chinese cabbage and Arabidopsis. RNA-seq data showed that eight RsHSF genes including RsHSF-03, were highly expressed in the leaf, root, cortex, cambium and xylem, indicating that these genes might be involved in plant growth and development. Further, quantitative real-time polymerase chain reaction (RT-qPCR) indicated that the expression patterns of 12 RsHSF genes varied upon exposure to different abiotic stresses including heat, salt, and heavy metals. These results indicated that the RsHSFs may be involved in abiotic stress response. Conclusions These results could provide fundamental insights into the characteristics and evolution of the HSF family and facilitate further dissection of the molecular mechanism responsible for radish abiotic stress responses.



Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 117
Author(s):  
Yan-Li Liu ◽  
Shuai Liu ◽  
Jing-Jing Xiao ◽  
Guo-Xin Cheng ◽  
Haq Saeed ul ◽  
...  

Pepper is a thermophilic crop, shallow-rooted plant that is often severely affected by abiotic stresses such as heat, salt, and drought. The growth and development of pepper is seriously affected by adverse stresses, resulting in decreases in the yield and quality of pepper crops. Small heat shock proteins (s HSPs) play a crucial role in protecting plant cells against various stresses. A previous study in our laboratory showed that the expression level of CaHSP18.1a was highly induced by heat stress, but the function and mechanism of CaHSP18.1a responding to abiotic stresses is not clear. In this study, we first analyzed the expression of CaHSP18.1a in the thermo-sensitive B6 line and thermo-tolerant R9 line and demonstrated that the transcription of CaHSP18.1a was strongly induced by heat stress, salt, and drought stress in both R9 and B6, and that the response is more intense and earlier in the R9 line. In the R9 line, the silencing of CaHSP18.1a decreased resistance to heat, drought, and salt stresses. The silencing of CaHSP18.1a resulted in significant increases in relative electrolyte leakage (REL) and malonaldehyde (MDA) contents, while total chlorophyll content decreased under heat, salt, and drought stresses. Overexpression analyses of CaHSP18.1a in transgenic Arabidopsis further confirmed that CaHSP18.1a functions positively in resistance to heat, drought, and salt stresses. The transgenic Arabidopsis had higherchlorophyll content and activities of superoxide dismutase, catalase, and ascorbate peroxidase than the wild type (WT). However, the relative conductivity and MDA content were decreased in transgenic Arabidopsis compared to the wild type (WT). We further showed that the CaHSP18.1a protein is localized to the cell membrane. These results indicate CaHSP18.1a may act as a positive regulator of responses to abiotic stresses.



Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 445
Author(s):  
Morena M. Tinte ◽  
Kekeletso H. Chele ◽  
Justin J. J. van der Hooft ◽  
Fidele Tugizimana

Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.



2021 ◽  
Vol 22 (5) ◽  
pp. 2591
Author(s):  
Pengfei Ma ◽  
Jie Li ◽  
Lei Qi ◽  
Xiuzhu Dong

Small heat shock proteins (sHsps) are widely distributed among various types of organisms and function in preventing the irreversible aggregation of thermal denaturing proteins. Here, we report that Hsp17.6 from Methanolobus psychrophilus exhibited protection of proteins from oxidation inactivation. The overexpression of Hsp17.6 in Escherichia coli markedly increased the stationary phase cell density and survivability in HClO and H2O2. Treatments with 0.2 mM HClO or 10 mM H2O2 reduced malate dehydrogenase (MDH) activity to 57% and 77%, whereas the addition of Hsp17.6 recovered the activity to 70–90% and 86–100%, respectively. A similar effect for superoxide dismutase oxidation was determined for Hsp17.6. Non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis assays determined that the Hsp17.6 addition decreased H2O2-caused disulfide-linking protein contents and HClO-induced degradation of MDH; meanwhile, Hsp17.6 protein appeared to be oxidized with increased molecular weights. Mass spectrometry identified oxygen atoms introduced into the larger Hsp17.6 molecules, mainly at the aspartate and methionine residues. Substitution of some aspartate residues reduced Hsp17.6 in alleviating H2O2- and HClO-caused MDH inactivation and in enhancing the E. coli survivability in H2O2 and HClO, suggesting that the archaeal Hsp17.6 oxidation protection might depend on an “oxidant sink” effect, i.e., to consume the oxidants in environments via aspartate oxidation



PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82264 ◽  
Author(s):  
Changjun Mu ◽  
Shijia Zhang ◽  
Guanzhong Yu ◽  
Ni Chen ◽  
Xiaofeng Li ◽  
...  


1989 ◽  
Vol 9 (11) ◽  
pp. 5265-5271 ◽  
Author(s):  
R E Susek ◽  
S L Lindquist

Analysis of the cloned gene confirms that hsp26 of Saccharomyces cerevisiae is a member of the small heat shock protein superfamily. Previous mutational analysis failed to demonstrate any function for the protein. Further experiments presented here demonstrate that hsp26 has no obvious regulatory role and no major effect on thermotolerance. It is possible that the small heat shock protein genes originated as primitive viral or selfish DNA elements.



2018 ◽  
Vol 19 (11) ◽  
pp. 3441 ◽  
Author(s):  
Teresa Jagla ◽  
Magda Dubińska-Magiera ◽  
Preethi Poovathumkadavil ◽  
Małgorzata Daczewska ◽  
Krzysztof Jagla

Heat shock proteins (Hsps) form a large family of evolutionarily conserved molecular chaperones that help balance protein folding and protect cells from various stress conditions. However, there is growing evidence that Hsps may also play an active role in developmental processes. Here, we take the example of developmental expression and function of one class of Hsps characterized by low molecular weight, the small Hsps (sHsps). We discuss recent reports and genome-wide datasets that support vital sHsps functions in the developing nervous system, reproductive system, and muscles. This tissue- and time-specific sHsp expression is developmentally regulated, so that the enhancer sequence of an sHsp gene expressed in developing muscle, in addition to stress-inducible elements, also carries binding sites for myogenic regulatory factors. One possible reason for sHsp genes to switch on during development and in non-stress conditions is to protect vital developing organs from environmental insults.



Sign in / Sign up

Export Citation Format

Share Document