scholarly journals HDAC4 mutant represses chondrocyte hypertrophy by locating in the nucleus and attenuates disease progression of posttraumatic osteoarthritis

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xiaodong Gu ◽  
Fei Li ◽  
Yangyang Gao ◽  
Xianda Che ◽  
Pengcui Li

Abstract Background The aim of this study was to evaluate whether histone deacetylase 4 S246/467/632A mutant (m-HDAC4) has enhanced function at histone deacetylase 4 (HDAC4) to attenuate cartilage degeneration in a rat model of osteoarthritis (OA). Methods Chondrocytes were infected with Ad-m-HDAC4-GFP or Ad-HDAC4-GFP for 24 h, incubated with interleukin-1β (IL-1β 10 ng/mL) for 24 h, and then measured by RT-qPCR. Male Sprague-Dawley rats (n = 48) were randomly divided into four groups and transduced with different vectors: ACLT/Ad-GFP, ACLT/Ad-HDAC4-GFP, ACLT/Ad-m-HDAC4-GFP, and sham/Ad-GFP. All rats received intra-articular injections 48 h after the operation and every 3 weeks thereafter. Cartilage damage was assessed using radiography and Safranin O staining and quantified using the OARSI score. The hypertrophic and anabolic molecules were detected by immunohistochemistry and RT-qPCR. Results M-HDAC4 decreased the expression levels of Runx-2, Mmp-13, and Col 10a1, but increased the levels of Col 2a1 and ACAN more effectively than HDAC4 in the IL-1β-induced chondrocyte OA model; upregulation of HDAC4 and m-HDAC4 in the rat OA model suppressed Runx-2 and MMP-13 production, and enhanced Col 2a1 and ACAN synthesis. Stronger Safranin O staining was detected in rats treated with m-HDAC4 than in those treated with HDAC4. The resulting OARSI scores were lower in the Ad-m-HDAC4 group (5.80 ± 0.45) than in the Ad-HDAC4 group (9.67 ± 1.83, P = 0.045). The OARSI scores were highest in rat knees that underwent ACLT treated with Ad-GFP control adenovirus vector (14.93 ± 2.14, P = 0.019 compared with Ad-HDAC4 group; P = 0.003 compared with Ad-m-HDAC4 group). Lower Runx-2 and MMP-13 production, and stronger Col 2a1 and ACAN synthesis were detected in rats treated with m-HDAC4 than in those treated with HDAC4. Conclusions M-HDAC4 repressed chondrocyte hypertrophy and induced chondrocyte anabolism in the nucleus. M-HDAC4 was more effective in attenuating articular cartilage damage than HDAC4.

2020 ◽  
Author(s):  
Wei Lin ◽  
Yike Dai ◽  
Jinghui Niu ◽  
Chongyi Fan ◽  
Xunkai Feng ◽  
...  

Abstract Background As one of the lower extremity deformities in human, trochlear dysplasia is a commonly encountered disease. However, the molecular mechanism of cartilage degeneration in trochlear dysplasia is indefinite yet. It was apparent to all that PI3K/AKT signal pathway is extremely significant in regulating the pathophysiological process of cartilage degeneration. The purpose of this research is to discuss the correlation between PI3K/AKT signal pathway and trochlear dysplasia cartilage degeneration. Materials and methods 120 female Sprague-Dawley rats at 4 weeks of age were separate into control group and experimental group randomly. The distal femurs were isolated from the experimental and unsurgeried control group at the point of the 4, 8, 12 weeks, correspondingly. Micro-CT and histological examination were carried out to investigate the anatomical structure and cartilage changes of the trochlear. Subsequently, the expression of PI3K/AKT, TGFβ1 and ADAMTS-4 in cartilage were investigated by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Results In the experimental group, the trochlear dysplasia model was successfully established at 8 weeks after surgery. Moreover, the cartilage degeneration was found from 8 weeks, with continued higher protein and mRNA expression of PI3K/AKT, TGFβ1 and ADAMTS-4 compared with the control group. Conclusions This research suggested that patellar instability may lead to trochlear dysplasia in growing rats. Moreover, trochlear dysplasia was probably one of the causes of patellofemoral osteoarthritis and the cartilage degeneration in trochlear dysplasia might be associate with activation of PI3K/AKT signal pathway. However, more research was required to clarify the underlying mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Venkata Krishnaraju Alluri ◽  
Sreenath Kundimi ◽  
Krishanu Sengupta ◽  
Trimurtulu Golakoti ◽  
Eswar Kumar Kilari

The boswellic acids, the active compounds in Boswellia serrata gum resin extract, are potent anti-inflammatory agents and are specific nonredox inhibitors of 5-Lipoxygenase (5-LOX). Here, we present the anti-osteoarthritis (OA) efficacy of LI13019F1 (also known as Serratrin®), a unique composition containing the acidic and nonacidic fractions of B. serrata gum resin. This composition strongly inhibited 5-LOX activity with the half-maximal inhibitory concentration (IC50) of 43.35 ± 4.90 μg/mL. Also, LI13019F1 strongly inhibited the leukotriene B4 (IC50, 7.80 ± 2.40 μg/mL) and prostaglandin E2 (IC50, 6.19 ± 0.52 μg/mL) productions in human blood-derived cells. Besides, LI13019F1 reduced TNF-α production with the IC50 of 12.38 ± 0.423 μg/mL. On average, 1, 2.5, and 5 μg/mL doses of LI13019F1 protected 34.62, 47.66, and 62.29% SW1353 human chondrosarcoma cells from IL-1β induced SOX-9 depletion, respectively. Further, a 28-day preclinical proof-of-concept study evaluated the pain relief efficacy of LI13019F1 in monoiodoacetate- (MIA-) induced Sprague-Dawley rats. At the end of the study, 150 and 300 mg/kg doses of LI13019F1 supplemented rats showed significant improvements (55.17 ± 5.81 g (p<0.05), and 66.22 ± 6.30 g (p<0.05), respectively, vs. MIA: 31.22 ± 7.15 g) in body-weight-bearing capacities. Concurrently, LI13019F1-150 and LI13019F1-300 rats substantially (p<0.05) increased the threshold of pain sensitivity to pressure (26.98 ± 2.36 and 28.06 ± 2.72-gram force, respectively; vs. 18.63 ± 5.82 in MIA) and increased (p<0.05) the latent time to withdraw the paw after a thermal stimulus (23.61 ± 2.73 and 28.18 ± 1.90 sec, respectively; vs. 16.56 ± 1.22 sec. in MIA). Besides, the histological observations on Safranin-O green stained articular cartilage revealed that LI13019F1 also prevented the MIA-induced structural damage of the cartilage and reduced the loss of the extracellular matrix (ECM) components in the experimental rats. In conclusion, the present observations suggest that LI13019F1, a new composition of B. serrata gum resin extracts, reduces pain and protects articular cartilage from the damaging action of MIA in a rodent model.


2009 ◽  
Vol 29 (21) ◽  
pp. 5751-5762 ◽  
Author(s):  
Elena Kozhemyakina ◽  
Todd Cohen ◽  
Tso-Pang Yao ◽  
Andrew B. Lassar

ABSTRACT The maturation of immature chondrocytes to hypertrophic chondrocytes is regulated by parathyroid hormone-related peptide (PTHrP). We demonstrate that PTHrP or forskolin administration can block induction of collagen X-luciferase by exogenous Runx2, MEF2, and Smad1 in transfected chondrocytes. We have found that PTHrP/forskolin administration represses the transcriptional activity of MEF2 and that forced expression of MEF2-VP16 can restore expression of the collagen X reporter in chondrocytes treated with these agents. PTHrP/forskolin induces dephosphorylation of histone deacetylase 4 (HDAC4) phospho-S246, which decreases interaction of HDAC4 with cytoplasmic 14-3-3 proteins and promotes nuclear translocation of HDAC4 and repression of MEF2 transcriptional activity. We have found that forskolin increases the activity of an HDAC4 phospho-S246 phosphatase and that forskolin-induced nuclear translocation of HDAC4 was reversed by the protein phosphatase 2A (PP2A) antagonist, okadaic acid. Finally, we demonstrate that knockdown of PP2A inhibits forskolin-induced nuclear translocation of HDAC4 and attenuates the ability of this signaling molecule to repress collagen X expression in chondrocytes, indicating that PP2A is critical for PTHrP-mediated regulation of chondrocyte hypertrophy.


Author(s):  
Kok-Yong Chin ◽  
Sok Kuan Wong ◽  
Fadhlullah Zuhair Japar Sidik ◽  
Juliana Abdul Hamid ◽  
Nurul Hafizah Abas ◽  
...  

Osteoarthritis is a degenerative joint disease which primarily affects the articular cartilage and subchondral bones. Since there is an underlying localized inflammatory component in the pathogenesis of osteoarthritis, compounds like tocotrienol with anti-inflammatory properties may be able to retard its progression. This study aimed to determine the effects of oral tocotrienol supplementation on the articular cartilage and subchondral bone in a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). Thirty male Sprague-Dawley rats (three-month-old) were randomized into five groups. Four groups were induced with osteoarthritis (single injection of MIA at week 0) and another served as the sham group. Three of the four groups with osteoarthritis were supplemented with annatto tocotrienol at 50, 100 and 150 mg/kg/day orally for five weeks. At week 5, all rats were sacrificed, and their tibial-femoral joints were harvested for analysis. The results indicated that the groups which received annatto tocotrienol at 100 and 150 mg/kg/day had lower histological scores and cartilage remodeling markers. Annatto tocotrienol at 150 mg/kg/day significantly lowered the osteocalcin levels and osteoclast surface of subchondral bone. In conclusion, annatto tocotrienol may potentially retard the progression of osteoarthritis. Future studies to confirm its mechanism of joint protection should be performed.


2020 ◽  
Vol 10 (5) ◽  
pp. 704-708
Author(s):  
Ying Wang ◽  
Lili Sun ◽  
Junli Qin ◽  
Meng Wu ◽  
Jinfeng Zhang

Osteoarthritis is a chronic multiple degenerative bone and joint disease. The most common manifestations are damaged articular cartilage, thickening and sclerosis of subchondral bone, and osteophytes formation at the joint edge. This study will block the Wnt/β -catenin signaling pathway to observe its role on a rat model of osteoarthritis. In this experiment, rat osteoarthritis model was established by intra-articular administration of iodoacetic acid. The LF-3 treatment was started on the second day after modeling. Two weeks later, rat knee articular cartilage was collected. The morphology of cartilage was observed by HE, Safranin O and toluidine blue staining. The expression levels of TIMP-3, MMP-9 protein and mRNA were detected by western blot and real-time quantitative PCR. After blocking the Wnt/ β-catenin signaling pathway, TIMP-3 expression level was increased, MMP-9 expression was decreased, and cartilage damage was ameliorated. Blocking the Wnt/ β-catenin signal can reduce the degradation of matrix in cartilage tissue, thereby playing a protective role and helping the recovery of osteoarthritic rats.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasutaka Murahashi ◽  
Fumiko Yano ◽  
Ryota Chijimatsu ◽  
Hideki Nakamoto ◽  
Yuji Maenohara ◽  
...  

AbstractOsteoarthritis (OA) is one of the world’s most common degenerative diseases, but there is no disease-modifying treatment available. Previous studies have shown that prostaglandin E2 (PGE2) and PGE2 receptor 4 (EP4) are involved in OA pathogenesis; however, their roles are not fully understood. Here, we examined the efficacy of oral administration of KAG-308, an EP4-selective agonist, in surgically induced mouse knee OA. Cartilage degeneration and synovitis were significantly inhibited by the KAG-308 treatment. Chondrocyte hypertrophy and expression of tumor necrosis factor alpha (TNF) and matrix metalloproteinase 13 (Mmp13) in the synovium were suppressed in the KAG-308-treated mice. In cultured chondrocytes, hypertrophic differentiation was inhibited by KAG-308 and intranuclear translocation of histone deacetylase 4 (Hdac4) was enhanced. In cultured synoviocytes, lipopolysaccharide (LPS)-induced expression of TNF and Mmp13 was also suppressed by KAG-308. KAG-308 was detected in the synovium and cartilage of orally treated mice. TNF secretion from the synovia of KAG-308-treated mice was significantly lower than control mice. Thus, we conclude that oral administration of KAG-308 suppresses OA development through suppression of chondrocyte hypertrophy and synovitis. KAG-308 may be a potent candidate for OA drug development.


2016 ◽  
Vol 43 (10) ◽  
pp. 1864-1870 ◽  
Author(s):  
A. Robin Poole ◽  
Nhuan Ha ◽  
Suzanne Bourdon ◽  
Eric C. Sayre ◽  
Ali Guermazi ◽  
...  

Objective.To evaluate the association of a sandwich assay for cartilage collagenase-mediated degradation, the C2C human urine sandwich assay (IB-C2C-HUSA), with early and late knee cartilage pathology and with progression of cartilage damage.Methods.A population-based cohort with knee pain, age 40–79 years, was evaluated at baseline (n = 253) and after mean 3.3 years (n = 161). We evaluated the IB-C2C-HUSA and a related competitive inhibition assay (C2C). The C2C assay was applied to serum (sC2C) and urine (uC2C). Based on knee radiographs and magnetic resonance imaging (MRI), 3 subgroups [no cartilage pathology, preradiographic cartilage pathology, and radiographic osteoarthritis (ROA)] were evaluated cross-sectionally for association with biomarker levels. Longitudinally, we evaluated whether baseline assays predict subsequent progression of cartilage degeneration, defined by MRI cartilage loss.Results.Cross-sectionally, statistically significant differences were seen in the 3 subgroups for IB-C2C-HUSA (p < 0.001), with the highest levels seen in ROA, and for sC2C (p = 0.023), while no differences were seen for uC2C (p = 0.501). Baseline IB-C2C-HUSA levels were higher in progressors vs nonprogressors (p = 0.003). In logistic regression analysis, only baseline IB-C2C-HUSA was associated with an increased risk of progression of cartilage damage (OR 1.78, 95% CI 1.03–3.09).Conclusion.The IB-C2C-HUSA degradation assay detects the generation of a pathology-related cartilage collagen peptide(s) that increase(s) with onset of degeneration of knee articular cartilage. The baseline values are associated with progression of cartilage degeneration over 3 subsequent years. This assay may have value in clinical OA trials. Further, it points to collagenase activity as a therapeutic target for controlling degeneration of articular cartilage.


Author(s):  
Theodore W. Vandenberg ◽  
Christopher R. Nehme ◽  
Thomas P. James

Articular cartilage degeneration is a central pathological feature of osteoarthritis. Cartilage in the adult does not regenerate in vivo and, as a result, cartilage damage in osteoarthritis is irreversible. With our ever-aging population, osteoarthritis has become a leading cause of disability and unfortunately, no optimal treatments for osteoarthritis are currently available. To address this problem, a research community is focused on the development of both natural and synthetic biodegradable tissue scaffolds. The scaffolds must contain depressions or holes for the purpose of chondrocyte seeding and growth in order to create an implantable construct. In addition to chondrocytes, cartilage tissue consists of the extracellular matrix (ECM). Studies of many tissue types have established that ECM plays an important role in regulating cell behavior and controlling processes such as tissue differentiation and tumor progression. Unlike most natural tissues, adult cartilage ECM is exceptionally dense and lacking in vascularity, which makes it difficult for chondrocytes to be transplanted directly into the matrix. Current methods of creating cell home sites through chemical decellularization of the ECM degrade the mechanical integrity of the cartilage tissue. The research conducted here used a mechanical, rather than chemical, method to create cell home sites. A novel micropunching machine was developed to fabricate 200 μm diameter holes in cartilage, thereby creating a porous natural scaffold while maintaining a healthy ECM. Equine articular cartilage slices were harvested from the cadaver’s back knee joint and cryo-sectioned into 100 μm thick slices. Using die clearances of 3.7%, 6.8%, and 8.9%, the results indicate that micro-scale holes can be mechanically punched in cartilage tissue. The maximum punching force showed a slight trend of decreasing as die clearance increased, but there was no statistical significance. Punching force, as well as hole size, was highly dependent on sample hydration. Upon inspection, the resulting hole sizes were approximately 50 μm to 150 um, indicating 25% to 75% shrinkage in reference to the male punch diameter. Finally, the resulting hole shape was observed to be slightly non-circular and the edges of the hole exhibited a raggedness, which was indicative of the cartilage tearing during hole punching.


Sign in / Sign up

Export Citation Format

Share Document