scholarly journals Comparative vulnerability of Indosylvirana temporalis and Clinotarsus curtipes (Anura: Ranidae) tadpoles to water scorpions: importance of refugia and swimming speed in predator avoidance

2021 ◽  
Vol 20 (2) ◽  
pp. 159-164
Author(s):  
Santosh M. Mogali ◽  
Bhagyashri A. Shanbhag ◽  
Srinivas K. Saidapur

The comparative vulnerability of two co-existing tadpole species (Indosylvirana temporalis and Clinotarsus curtipes) to their common predator, water scorpions (Laccotrephes sp.; Hemiptera: Nepidae), and the importance of refugia in predator avoidance were studied in the laboratory. In a total of 60 experimental trials, 10 tadpoles each of I. temporalis and C. curtipes of comparable body sizes were exposed to water scorpions (starved for 48 h). Thirty trials included refugia while 30 did not. The results of this study showed that in both the absence and the presence of refugia C. curtipes tadpoles fell prey to water scorpions more frequently than I. temporalis tadpoles. A main difference between the two species is the speed of swimming; Vmax of C. curtipes (24.73 cm/s) tadpoles is lower than that of I. temporalis (30.78 cm/s) tadpoles. This is likely to be the reason why more C. curtipes tadpoles were preyed upon than were I. temporalis tadpoles. Predation risk of tadpoles of both species was affected significantly by the presence of refuge sites. The vulnerability of both tadpole species was lower where refuge sites were available. The present study clearly shows that I. temporalis tadpoles avoid predation by water scorpions more effectively than do C. curtipes tadpoles.

2015 ◽  
Vol 282 (1820) ◽  
pp. 20151886 ◽  
Author(s):  
Christine N. Bedore ◽  
Stephen M. Kajiura ◽  
Sönke Johnsen

Cephalopods, and in particular the cuttlefish Sepia officinalis , are common models for studies of camouflage and predator avoidance behaviour. Preventing detection by predators is especially important to this group of animals, most of which are soft-bodied, lack physical defences, and are subject to both visually and non-visually mediated detection. Here, we report a novel cryptic mechanism in S. officinalis in which bioelectric cues are reduced via a behavioural freeze response to a predator stimulus. The reduction of bioelectric fields created by the freeze-simulating stimulus resulted in a possible decrease in shark predation risk by reducing detectability. The freeze response may also facilitate other non-visual cryptic mechanisms to lower predation risk from a wide range of predator types.


2008 ◽  
Vol 29 (2) ◽  
pp. 278-283 ◽  
Author(s):  
Mark Jordan ◽  
Howard Snell ◽  
Jennifer Hollis ◽  
Paul Stone

Abstract Gradients in habitat structure are expected to influence the outcome of selection on traits that contribute to communicative display. Galápagos lava lizards (Microlophus albemarlensis complex) on Isla Plaza Sur in the Galápagos Islands occur across a gradient of vegetative cover. Previous work in this population has shown that traits associated with predator avoidance are magnified in habitats with low vegetative cover. This pattern suggests that predation pressure differs by habitat and thus, may act to select against the elaboration of ornamentation. We measured the size of the chin patch, an ornament known to be used in intraspecific signaling, to test this hypothesis. The area of the chin patch was dependent on both snout-vent length and residual body mass. In contrast to expectation, males had larger chin patches in the sparsely vegetated habitat suggested to have high predation risk. This result raises questions about the presumed survival cost of ornament elaboration.


2020 ◽  
Vol 31 (4) ◽  
pp. 1031-1039 ◽  
Author(s):  
Matthew E Nielsen ◽  
Johanna Mappes

Abstract Warning coloration should be under strong stabilizing selection but often displays considerable intraspecific variation. Opposing selection on color by predators and temperature is one potential explanation for this seeming paradox. Despite the importance of behavior for both predator avoidance and thermoregulation, its role in mediating selection by predators and temperature on warning coloration has received little attention. Wood tiger moth caterpillars, Arctia plantaginis, have aposematic coloration, an orange patch on the black body. The size of the orange patch varies considerably: individuals with larger patches are safer from predators, but having a small patch is beneficial in cool environments. We investigated microhabitat preference by these caterpillars and how it interacted with their coloration. We expected caterpillar behavior to reflect a balance between spending time exposed to maximize basking and spending time concealed to avoid detection by predators. Instead, we found that caterpillars preferred exposed locations regardless of their coloration. Whether caterpillars were exposed or concealed had a strong effect on both temperature and predation risk, but caterpillars in exposed locations were both much warmer and less likely to be attacked by a bird predator (great tits, Parus major). This shared optimum may explain why we observed so little variation in caterpillar behavior and demonstrates the important effects of behavior on multiple functions of coloration.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Nicolle Demandt ◽  
David Bierbach ◽  
Ralf H. J. M. Kurvers ◽  
Jens Krause ◽  
Joachim Kurtz ◽  
...  

Abstract A key benefit of sociality is a reduction in predation risk. Cohesive group behaviour and rapid collective decision making are essential for reducing predation risk in groups. Parasite infection might reduce an individuals’ grouping behaviours and thereby change the behaviour of the group as a whole. To investigate the relationship between parasite infection and grouping behaviours, we studied groups of three-spined sticklebacks, Gasterosteus aculeatus, varying the number of individuals experimentally infected with the cestode Schistocephalus solidus. We studied groups of six sticklebacks containing 0, 2, 3, 4 or 6 infected individuals before and after a simulated bird attack. We predicted that infected individuals would have reduced shoaling and swimming speed and that the presence of infected individuals within a group would reduce group cohesion and speed. Uninfected fish increased shoaling and reduced swimming speed more than infected fish after the bird attack. In groups containing both infected and uninfected fish, the group behaviours were dominated by the more frequent character (uninfected versus infected). Interestingly, groups with equal numbers of uninfected and infected fish showed the least shoaling and had the lowest swimming speeds, suggesting that these groups failed to generate a majority and therefore displayed signs of indecisiveness by reducing their swimming speed the most. Our results provide evidence for a negative effect of infection on a group’s shoaling behaviour, thereby potentially deteriorating collective decision making. The presence of infected individuals might thus have far-reaching consequences in natural populations under predation risk. Significance statement Parasite-infected individuals often show deviating group behaviours. This might reduce the anti-predator benefits of group living. However, it is unknown whether such deviations in group behaviour might influence the shoaling behaviour of uninfected group members and thereby the behaviour of the group as a whole. By experimentally infecting sticklebacks and investigating groups varying in infection rates, we show that infected sticklebacks differ in their shoaling behaviours from uninfected sticklebacks. Additionally, the presence of infected sticklebacks within the group affected the behaviour of uninfected shoal members. We show that shoals of infected fish are less cohesive and move slower compared to shoals of uninfected fish. Furthermore, we show that the infection rate of the shoal is crucial for how the group behaves.


2014 ◽  
Vol 60 (3) ◽  
pp. 323-332 ◽  
Author(s):  
Chris K. Elvidge ◽  
Indar Ramnarine ◽  
Grant E. Brown

Abstract In response to acute predation threats, prey may sacrifice foraging opportunities in favour of increased predator avoidance. Under conditions of high or frequent predation risk, such trade-offs may lead to reduced fitness. Here, we test the prediction that prey reduce the costs associated with lost opportunities following acute predation threats by exhibiting short-term compensatory foraging responses. Under semi-natural conditions, we exposed female guppies Poecilia reticulate from high and low predation risk sites to one of three levels of acute predation threat (high, intermediate or low concentrations of conspecific alarm cues). Our results confirm previous reports, demonstrating that guppies from a high predation site were consistently ‘bolder’ (shorter escape latencies) and exhibited graded threat-sensitive responses to different simulated threat levels while those from the low predation site were ‘shyer’ and exhibited non-graded responses. Most importantly, we found that when guppies from low predation sites resumed foraging, they did so at rates significantly lower than baseline rates. However, guppies from high predation sites resumed foraging either at rates equal to baseline (in response to low or intermediate risk stimuli) or significantly increased relative to baseline rates (in response to high risk stimuli). Together, these results highlight a complex compensatory behavioral mechanism that may allow prey to reduce the long-term costs associated with predator avoidance.


2006 ◽  
Vol 63 (9) ◽  
pp. 2119-2125 ◽  
Author(s):  
Stephen J Casselman ◽  
Albrecht I Schulte-Hostedde ◽  
Robert Montgomerie

We examined how variation in sperm quality influences a male's success at fertilizing ova (male fertilization success) in a wild population of walleye (Sander vitreus). To do this, we conducted controlled fertilization trials using milt and eggs (ova) from wild-spawning fish and measured male fertilization success (percentage of ova fertilized) by examining eggs after 24 h of incubation. We found that both the number of sperm and sperm swimming speed (at 10 s after activation) were significantly related to fertilization success. There was, with respect to fertilization success, a relatively large return on male investment in the number of sperm, but this return diminished as the percentage of ova fertilized increased above 50%. This is in agreement with theoretical predictions based on external fertilization dynamics. When the number of sperm used in the experimental trials was kept constant, variation in sperm swimming speed (at 10 s after activation) explained approximately 90% of the variation in a male's fertilization success. These findings demonstrate that the variation in sperm quality found in wild spawning populations has the potential to dramatically influence male reproductive success.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jean-François Hamel ◽  
Sara Jobson ◽  
Guillaume Caulier ◽  
Annie Mercier

AbstractRecent efforts have been devoted to the link between responses to non-physical stressors and immune states in animals, mostly using human and other vertebrate models. Despite evolutionary relevance, comparatively limited work on the appraisal of predation risk and aspects of cognitive ecology and ecoimmunology has been carried out in non-chordate animals. The present study explored the capacity of holothuroid echinoderms to display an immune response to both reactive and anticipatory predatory stressors. Experimental trials and a mix of behavioural, cellular and hormonal markers were used, with a focus on coelomocytes (analogues of mammalian leukocytes), which are the main components of the echinoderm innate immunity. Findings suggest that holothuroids can not only appraise threatening cues (i.e. scent of a predator or alarm signals from injured conspecifics) but prepare themselves immunologically, presumably to cope more efficiently with potential future injuries. The responses share features with recently defined central emotional states and wane after prolonged stress in a manner akin to habituation, which are traits that have rarely been shown in non-vertebrates, and never in echinoderms. Because echinoderms sit alongside chordates in the deuterostome clade, such findings offer unique insights into the adaptive value and evolution of stress responses in animals.


2021 ◽  
Author(s):  
Mitchell P Ford ◽  
Arvind Santhanakrishnan

Numerous species of aquatic invertebrates, including crustaceans, swim by oscillating multiple closely spaced appendages. The coordinated, out-of-phase motion of these appendages, known as "metachronal paddling", has been well-established to improve swimming performance relative to synchronous paddling. Invertebrates employing this propulsion strategy cover a wide range of body sizes and shapes, but the ratio of appendage spacing (G) to the appendage length (L) has been reported to lie in a comparatively narrow range of 0.2 < G/L ≤ 0.65. The functional role of G/L on metachronal swimming performance is unknown. We hypothesized that for a given Reynolds number and stroke amplitude, hydrodynamic interactions promoted by metachronal stroke kinematics with small G/L can increase forward swimming speed. We used a dynamically scaled self-propelling robot to comparatively examine swimming performance and wake development of metachronal and synchronous paddling under varying G/L, phase lag, and stroke amplitude. G/L was varied from 0.4 to 1.5, with the expectation that when G/L is large, there should be no performance difference between metachronal and synchronous paddling due to a lack of interaction between vortices that form on the appendages. Metachronal stroking at non-zero phase lag with G/L in the biological range produced faster swimming speeds than synchronous stroking. As G/L increased and as stroke amplitude decreased, the influence of phase lag on the swimming speed of the robot was reduced. For smaller G/L, vortex interactions between adjacent appendages generated a horizontally-oriented wake and increased momentum fluxes relative to larger G/L, which contributed to increasing swimming speed. We find that while metachronal motion augments swimming performance for closely spaced appendages (G/L < 1), moderately spaced appendages (1.0 ≤ G/L ≤ 1.5) can benefit from metachronal motion only when the stroke amplitude is large.


Sign in / Sign up

Export Citation Format

Share Document