scholarly journals Investigation of Oxygen Influence to the Optical Properties of Tirapazamine

Author(s):  
Jonas Sarlauskas ◽  
Kamile Tulaite ◽  
Jelena Tamuliene

Abstract New data on 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine) fluorescence has been obtained using the Perkin–Elmer UV-vis-NIR spectrophotometer Lambda 950 experimental technique in combination with the extensive DFT-theory approach. Based on the results obtained, we revealed that theoptical properties of the molecule under study remain significantly unchanged when the number of oxygen substitutions decreases from 2 to 0. Here we also present the results of the study of the influence of acetonitrile and ethyl acetate on the fluorescence of tirapazamine with the different number of oxygen atoms. Results of our investigation indicate the formation of anion in the case of 3-amino-1,2,4-benzotriazine 1,4-dioxide with two oxygen atoms and their transformation to tirapazamine with one oxygen atom.

2020 ◽  
Vol 92 (2) ◽  
pp. 20402
Author(s):  
Kaoutar Benthami ◽  
Mai ME. Barakat ◽  
Samir A. Nouh

Nanocomposite (NCP) films of polycarbonate-polybutylene terephthalate (PC-PBT) blend as a host material to Cr2O3 and CdS nanoparticles (NPs) were fabricated by both thermolysis and casting techniques. Samples from the PC-PBT/Cr2O3 and PC-PBT/CdS NCPs were irradiated using different doses (20–110 kGy) of γ radiation. The induced modifications in the optical properties of the γ irradiated NCPs have been studied as a function of γ dose using UV Vis spectroscopy and CIE color difference method. Optical dielectric loss and Tauc's model were used to estimate the optical band gaps of the NCP films and to identify the types of electronic transition. The value of optical band gap energy of PC-PBT/Cr2O3 NCP was reduced from 3.23 to 3.06 upon γ irradiation up to 110 kGy, while it decreased from 4.26 to 4.14 eV for PC-PBT/CdS NCP, indicating the growth of disordered phase in both NCPs. This was accompanied by a rise in the refractive index for both the PC-PBT/Cr2O3 and PC-PBT/CdS NCP films, leading to an enhancement in their isotropic nature. The Cr2O3 NPs were found to be more effective in changing the band gap energy and refractive index due to the presence of excess oxygen atoms that help with the oxygen atoms of the carbonyl group in increasing the chance of covalent bonds formation between the NPs and the PC-PBT blend. Moreover, the color intensity, ΔE has been computed; results show that both the two synthesized NCPs have a response to color alteration by γ irradiation, but the PC-PBT/Cr2O3 has a more response since the values of ΔE achieved a significant color difference >5 which is an acceptable match in commercial reproduction on printing presses. According to the resulting enhancement in the optical characteristics of the developed NCPs, they can be a suitable candidate as activate materials in optoelectronic devices, or shielding sheets for solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


Author(s):  
Leila G. Ranis ◽  
Jacqueline Gianino ◽  
Justin M. Hoffman ◽  
Seth N. Brown

Eight-coordinate MoO2(DOPOQ)2 can donate two oxygen atoms to substrates such as phosphines in a four-electron nonclassical oxygen atom transfer reaction.


2007 ◽  
Vol 131-133 ◽  
pp. 225-232 ◽  
Author(s):  
R. Jones

Oxygen precipitation in Si is a complex set of processes which has been studied over many years. Here we review theoretical work relating to the precipitation process. At temperatures around 450°C oxygen atoms become mobile and form a family of thermal double donors. The structure of these defects and the origin of their electrical activity is discussed. At temperature around 650°C these donors disappear and there is a growth of SiO2 precipitates along with rod like defects which are extended defects involving Si interstitials. At higher temperatures these collapse into dislocation loops. The structure and electrical properties of the rod like defect are described and compared with those of dislocations.


2021 ◽  
Author(s):  
◽  
Amane Shiohara

<p>Quantum dots have applications in biomedical fields such as bio-imaging and drug delivery systems. This thesis describes research on silicon and germanium nanoparticles (quantum dots) synthesis and surface modification for biological applications. Purification methods of these quantum dots were also explored. In chapter 6 the application of silica nanoparticles into dry eye diagnosis was studied. The purpose of this research is to contribute the application of nanotechnology into biological fields. The crystalinity of the quantum dots was characterised by Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction analysis (SAED). The molecules on the surface of the quantum dots were characterised by Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR).  Silicon quantum dots were synthesised with a microemulsion system and various types of molecules were attached on the surface of the silicon quantum dots. However, some of the capping molecules which have oxygen atoms tend to form bonds between oxygen and silicon. Therefore, in the later chapter (chapter 4) various chemical reactions were conducted on the molecules attached to the silicon quantum dots. The silicon quantum dots were capped with diene molecules and one of the double bonds was left on the terminal end. The terminal end double bonds were converted to the functional groups which contain oxygen atoms to form peptide bonds. In this way it was confirmed that it can reduce the risk of oxygen atoms to be attached on the surface of the silicon quantum dots. The molecules on the surface of the silicon quantum dots were characterised mainly by FTIR and ¹H NMR. Optical properties and cyto-toxicity of these silicon quantum dots were also measured and analysed depending on the surface molecules.  Two synthetic approaches were taken to produce germanium quantum dots. The first approach was the microemulsion system at room temperature. Different combinations of the surfactant and capping molecules were tested. For the second approach, high temperature bench top system was applied. In this method the bio-friendly molecules which have high boiling points were chosen as capping agents. The surface molecules were characterised by FTIR spectroscopy.  In chapter 6 the synthesis of dye molecules conjugated silica nanoparticles was described. The purpose of this research is to produce biologically safe nanoparticles which can be applied in dry eye diagnosis. Three different dyes were used to conjugate with the silica nanoparticles. Only fluorescein isothiocyanate (FITC) succeeded in conjugating with the nanoparticles. Optical properties of this sample were measured and compared with the free dye molecule. Also the sample was applied in human eyes to analyse the tear film layer.  An overall conclusion and future plans for the research were given in the last chapter.In this chapter, ideas of overcoming the problems and improving the techniques conducted in the research were described.</p>


2000 ◽  
Vol 78 (12) ◽  
pp. 1535-1543 ◽  
Author(s):  
Antonio Vila ◽  
Enrique Carballo ◽  
Ricardo A Mosquera

The integrated values of the electron population, electron energy, nucleus–electron potential energy interaction, dipole moment and volume of the oxygen atoms, and the main properties of the O—C bond critical points, were determined by employing the theory of atoms in molecules and 6-31++G**//6-31G* wave functions for a series of 25 unbranched alkyl monoethers. These results were used to assess the degree of approximate transferability of the oxygen atom along this series in terms of the particular alkyl radicals bonded to it. It has been found that a set of six different oxygen atoms is necessary to classify all the computed values. It can be established that the oxygen atoms bonded to propyl and larger radicals can be treated, in practice, as a transferable fragment, while those bonded to at least one smaller radical are specific. Though the total HF energy and the available experimental heats of formation are well fitted by a traditional additivity scheme that distinguishes only among O, CH2, and CH3 units, it has been found that the energy properties are influenced by the size of the molecule.Key words: transferability, AIM theory, ethers.


1967 ◽  
Vol 45 (20) ◽  
pp. 2303-2316 ◽  
Author(s):  
J. S. Stephens ◽  
C. Calvo

β-Zn3(PO4)2 crystallizes in the monoclinic space group P 21/c with lattice parameters, a = 9.393(3) Å, b = 9.170(6) Å, c = 8.686(3) Å, β = 125.73(10)°, and Z = 4. The three independent cations are strongly ligated to 4, 5, and 5 oxygen atoms, with average Zn—O bond distances of 1.98 ± 0.09 Å, 2.10 ± 0.10 Å, and 2.08 ± 0.13 Å respectively. In addition there are two longer Zn—O distances of 2.51 Å and 2.55 Å in this structure. The PO4 groups exist as independent, nearly regular tetrahedra, with each oxygen atom ligated to two cations. Unlike the structures found for the α and γ phases of Zn3(PO4)2, which contain ribbons and sheets respectively as the basic cation coordination motif, the structure of β-Zn3(PO4)2 contains interconnected sheets.


2007 ◽  
Vol 91 (3) ◽  
pp. 033504 ◽  
Author(s):  
Masahito Tagawa ◽  
Kumiko Yokota ◽  
Shinnosuke Tsumamoto ◽  
Chie Sogo ◽  
Akitaka Yoshigoe ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document