macroscopic level
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 34)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
pp. 2110853
Author(s):  
Simi Sui ◽  
Haonan Xie ◽  
Ming Liang ◽  
Bochao Chen ◽  
Chunyang Liu ◽  
...  

2021 ◽  
pp. 576-582
Author(s):  
Sarah M. Tisel ◽  
Bryan T. Klassen

Parkinson disease (PD) is the classic hypokinetic movement disorder and one of the most common and widely recognized neurodegenerative conditions. PD is distinct from parkinsonism, a term that refers to a syndrome of rest tremor, bradykinesia, rigidity, and postural instability. The mechanism behind the progressive degeneration and cell death that result in PD is not precisely understood. Substantia nigra depigmentation occurs on a macroscopic level and loss of dopaminergic neurons and gliosis on a microscopic level.


Author(s):  
Richard Pincak ◽  
Alexander Pigazzini ◽  
Saeid Jafari ◽  
Cenap Özel ◽  
Andrew Debenedictis

In this paper, we introduce a new geometric/topological approach to the emerging braneworld scenario in the context of D-branes using partially negative-dimensional product (PNDP) manifolds. The working hypothesis is based on the fact that the orientability of PNDP manifolds can be arbitrary, and starting from this, we propose that gravitational interaction can derive naturally from the non-orientability. According to this hypothesis, we show that topological defects can emerge from non-orientability and they can be identified as gravitational interaction at macroscopic level. In other words, the orientability of fundamental PNDPs can be related to the appearance of curvature at low-energy scales.


2021 ◽  
Vol 68 (5) ◽  
pp. 1153-1178
Author(s):  
Axel Klawonn ◽  
Martin Lanser ◽  
Oliver Rheinbach ◽  
Matthias Uran

AbstractThe Nakajima test is a well-known material test from the steel and metal industry to determine the forming limit of sheet metal. It is demonstrated how FE2TI, our highly parallel scalable implementation of the computational homogenization method FE$$^2$$ 2 , can be used for the simulation of the Nakajima test. In this test, a sample sheet geometry is clamped between a blank holder and a die. Then, a hemispherical punch is driven into the specimen until material failure occurs. For the simulation of the Nakajima test, our software package FE2TI has been enhanced with a frictionless contact formulation on the macroscopic level using the penalty method. The appropriate choice of suitable boundary conditions as well as the influence of symmetry assumptions regarding the symmetric test setup are discussed. In order to be able to solve larger macroscopic problems more efficiently, the balancing domain decomposition by constraints (BDDC) approach has been implemented on the macroscopic level as an alternative to a sparse direct solver. To improve the computational efficiency of FE2TI even further, additionally, an adaptive load step approach has been implemented and different extrapolation strategies are compared. Both strategies yield a significant reduction of the overall computing time. Furthermore, a strategy to dynamically increase the penalty parameter is presented which allows to resolve the contact conditions more accurately without increasing the overall computing time too much. Numerically computed forming limit diagrams based on virtual Nakajima tests are presented.


2021 ◽  
Author(s):  
Azhar Aulia Saputra ◽  
Kazuyoshi Wada ◽  
Shiro Masuda ◽  
Naoyuki Kubota

Abstract Dynamic locomotion is realized through a simultaneous integration of adaptability and optimality. This article proposes a neuro-cognitive model for multi-legged locomotion robot that can seamlessly integrate multi-modal sensing, ecological perception, and cognition through the coordination of interoceptive and exteroceptive sensory information. Importantly, cognitive models can be discussed as micro-, meso-, and macro-scopic; these concepts correspond to sensing, perception, and cognition; and short-, medium-, and long-term adaptation (in terms of ecological psychology). The proposed neuro-cognitive model integrates these intelligent functions from a multi-scopic point of view. Macroscopic-level presents an attention mechanism with short-term adaptive locomotion control conducted by lower-level sensorimotor coordination-based model. Macrosopic-level serves environmental cognitive map featuring higher-level behavior planning. Mesoscopic level shows integration between the microscopic and macroscopic approaches, enabling the model to reconstruct a map and conduct localization using bottom-up facial environmental information and top-down map information, generating intention towards the ultimate goal at the macroscopic level. The experiments demonstrated that adaptability and optimality of multi-legged locomotion could be achieved using the proposed multi-scale neuro-cognitive model, from short to long-term adaptation, with efficient computational usage. Future research directions can be implemented not only in robotics contexts but also in the context of interdisciplinary studies incorporating cognitive science and ecological psychology.


Author(s):  
Aravind R Kashyap

This project considers the operational impact of Autonomous Vehicles by creating a corridor using the latest network available. The behaviour of these vehicles entering the corridor is monitored at the macroscopic level by modifying the data which can be extracted from the vehicle. This data is made to learn using machine learning called the Time Series Neural Network and the data is used as a parameter to make the vehicles Autonomous. The project resolves the location, develops and demonstrates the collision avoidance of the vehicles using Artificial Intelligence. Autonomous means the vehicles will be able to learn to act accordingly without human intervention


Building materials must meet several requirements so that they can be used in a given application. These requirements are determined from the measurement of physical properties, depending on the nature of the components. This paper presents a set of mathematical processes and analyses to be carried out for new materials development according to the theory of dispersed or polydispersive systems, including a set of proposed steps to characterize such materials as the criteria for the study. Studies are considered at the microscopic level from the interaction of the elements and the macroscopic level from properties for emulsion cases, including viscosity.


Sign in / Sign up

Export Citation Format

Share Document