Securing the Automatic Identification System (AIS): Using public key cryptography to prevent spoofing whilst retaining backwards compatibility

2021 ◽  
pp. 1-13
Author(s):  
Gareth Wimpenny ◽  
Jan Šafář ◽  
Alan Grant ◽  
Martin Bransby

Abstract The civilian Automatic Identification System (AIS) has no inherent protection against spoofing. Spoofed AIS messages have the potential to interfere with the safe navigation of a vessel by, amongst other approaches, spoofing maritime virtual aids to navigation and/or differential global navigation satellite system (DGNSS) correction data conveyed across it. Acting maliciously, a single transmitter may spoof thousands of AIS messages per minute with the potential to cause considerable nuisance; compromising information provided by AIS intended to enhance the mariner's situational awareness. This work describes an approach to authenticate AIS messages using public key cryptography (PKC) and thus provide unequivocal evidence that AIS messages originate from genuine sources and so can be trusted. Improvements to the proposed AIS authentication scheme are identified which address a security weakness and help avoid false positives to spoofing caused by changes to message syntax. A channel loading investigation concludes that sufficient bandwidth is available to routinely authenticate all AIS messages whilst retaining backwards compatibility by carrying PKC ‘digital signatures’ in a separate VHF Data Exchange System (VDES) side channel.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shexiang Ma ◽  
Jie Wang ◽  
Xin Meng ◽  
Junfeng Wang

Vessels can obtain high precision positioning by using the global navigation satellite system (GNSS), but when the ship borne GNSS receiver fails, the existence of an alternative positioning system is important for the navigation safety of vessel. In this paper, a localization method based on the signals transmitted by satellite-based automatic identification system (AIS) is proposed for vessel in GNSS-denied environments. In the proposed method, the positioning model is a modification on the basis of time difference and frequency difference of arrival measurements by introducing an additional measurement, and the measurement is obtained through the interactive multiple model algorithm. The performance of the proposed strategy is evaluated through simulations, and the results validate the feasibility and reliability of vessel localization based on satellite-based AIS.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1590 ◽  
Author(s):  
Yi Jiang ◽  
Kai Zheng

In order to overcome the vulnerability of the Global Navigation Satellite System (GNSS), the International Maritime Organization (IMO) initiated the ranging mode (R-Mode) of the automatic identification system (AIS) to provide resilient position data. As the existing AIS is a communication system, the number of shore stations as reference stations cannot satisfy positioning requirements. Especially in the area near a shore station, it is very common that a vessel can only receive signals from one shore station, where the traditional positioning method cannot be used. A novel position estimation method using multiple antennas on shipborne equipment is proposed here, which provides a vessel’s position even though the vessel can only receive signals from a single shore station. It is beneficial for solving positioning issues in proximity to the coast. Further, as the distances between different antennas to the shore station are not sufficiently independent, the positioning matrix can easily be near singularity or ill-conditioned; thus, an effective position solving method is derived. Furthermore, the proposed method is verified and evaluated in different scenarios by numerical simulation. We assessed the influencing factors of positioning performance, such as the vessel’s heading angle, the relative position, and the distances between the shore station and the vessel. The proposed method widely expands the application scope of the AIS R-Mode positioning system.


2016 ◽  
Vol 70 (2) ◽  
pp. 225-241 ◽  
Author(s):  
R. Glenn Wright ◽  
Michael Baldauf

Vessel traffic in the Arctic is expanding in volume both within and transiting the region, yet the infrastructure necessary to support modern ship navigation is lacking. This includes aids to navigation such as buoys and beacons that can be difficult to place and maintain in this hostile environment that stretches across vast distances. The results of research are described which determine whether virtual electronic Aids to Navigation (eAtoN) existing entirely as digital information objects can overcome the practical limitations of physical aids to navigation (AtoN) and Automatic Identification System (AIS) radio eAtoN. Capabilities unique to virtual eAtoN that are not available using either physical or AIS radio technologies are also examined including dynamic and real time properties and immunity to Global Navigation Satellite System (GNSS) and AIS spoofing, aliasing, denial of service attacks and service outages. Conclusions are provided describing potential methods of deployment based upon similar concepts already in use.


2008 ◽  
Vol 6 (3) ◽  
pp. 235-246 ◽  
Author(s):  
Maciej Gucma

Low Cost Ais System for Safe Navigation Automatic Identification System (AIS) ensures automatic transfer of information between sea going vessels and land based monitoring centers. AIS transceivers are obligatory on board vessels of 300 gross register tones and over. System supports safe navigation at confined and open areas, whilst on the former mentioned is especially helpful due to limited range of radar. Article presents low cost AIS system for small vessels and leisure crafts where AIS is not obligatory but might be valuable navigational aid. Some aspects concerning accuracy are presented as well.


2021 ◽  
Vol 11 (11) ◽  
pp. 5015
Author(s):  
Andrej Androjna ◽  
Marko Perkovič ◽  
Ivica Pavic ◽  
Jakša Mišković

This paper takes a close look at the landscape of the Automatic Identification System (AIS) as a major source of information for maritime situational awareness (MSA) and identifies its vulnerabilities and challenges for safe navigation and shipping. As an important subset of cyber threats affecting many maritime systems, the AIS is subject to problems of tampering and reliability; indeed, the messages received may be inadvertently false, jammed, or intentionally spoofed. A systematic literature review was conducted for this article, complemented by a case study of a specific spoofing event near Elba in December 2019, which confirmed that the typical maritime AIS could be easily spoofed and generate erroneous position information. This intentional spoofing has affected navigation in international waters and passage through territorial waters. The maritime industry is neither immune to cyberattacks nor fully prepared for the risks associated with the use of modern digital systems. Maintaining seaworthiness in the face of the impact of digital technologies requires a robust cybersecurity framework.


2015 ◽  
Vol 9 (5) ◽  
pp. 568-580 ◽  
Author(s):  
Francesco Papi ◽  
Dario Tarchi ◽  
Michele Vespe ◽  
Franco Oliveri ◽  
Francesco Borghese ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 361-373
Author(s):  
Andrej Androjna ◽  
Marko Perkovič

The development of contemporary navigation and positioning systems have significantly improved reliability and speeds in maritime navigation. At the same time, the vulnerabilities of these systems to cyber threats represent a remarkable issue to the safety of navigation. Therefore, the maritime community has raised the question of cybersecurity of navigation systems in recent years. This paper aims to analyse the vulnerabilities of the Global Navigation Satellite System (GNSS), Electronic Chart Display Information System (ECDIS) and Automatic Identification System (AIS). The concepts of these systems were developed at a time when cybersecurity issues have not been among the  top priorities. Open broadcasts, the absence of or limited existence of data encryption and authentication can be considered as their primary security weaknesses. Therefore, these systems are vulnerable to cyber-attacks. The GPS as the data source of a ship’s position can relatively easily be jammed and/or spoofed, increasing the vulnerabilities of ECDIS and AIS. A systematic literature review was conducted for this article, supplemented by a SWOT analysis of the AIS service and particular case studies of recent cyber-attacks on these systems. The analysis of selected case studies confirmed that these systems could easily be spoofed and become a subject of data manipulation with significant consequences for the safety of navigation. The paper provides conclusions and recommendations highlighting the necessity for the users to be aware of the vulnerabilities of modern navigation systems.


Sign in / Sign up

Export Citation Format

Share Document