scholarly journals Wave-based optical coherence elastography: the 10-year perspective

Author(s):  
Fernando Zvietcovich ◽  
Kirill V Larin

Abstract After ten years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and, perhaps, one of the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and improving medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion of current challenges and future directions, including clinical translation research.

Author(s):  
Dale Chimenti ◽  
Stanislav Rokhlin ◽  
Peter Nagy

Physical Ultrasonics of Composites is a rigorous introduction to the characterization of composite materials by means of ultrasonic waves. Composites are treated here not simply as uniform media, but as inhomogeneous layered anisotropic media with internal structure characteristic of composite laminates. The objective here is to concentrate on exposing the singular behavior of ultrasonic waves as they interact with layered, anisotropic materials, materials which incorporate those structural elements typical of composite laminates. This book provides a synergistic description of both modeling and experimental methods in addressing wave propagation phenomena and composite property measurements. After a brief review of basic composite mechanics, a thorough treatment of ultrasonics in anisotropic media is presented, along with composite characterization methods. The interaction of ultrasonic waves at interfaces of anisotropic materials is discussed, as are guided waves in composite plates and rods. Waves in layered media are developed from the standpoint of the "Stiffness Matrix", a major advance over the conventional, potentially unstable Transfer Matrix approach. Laminated plates are treated both with the stiffness matrix and using Floquet analysis. The important influence on the received electronic signals in ultrasonic materials characterization from transducer geometry and placement are carefully exposed in a dedicated chapter. Ultrasonic wave interactions are especially susceptible to such influences because ultrasonic transducers are seldom more than a dozen or so wavelengths in diameter. The book ends with a chapter devoted to the emerging field of air-coupled ultrasonics. This new technology has come of age with the development of purpose-built transducers and electronics and is finding ever wider applications, particularly in the characterization of composite laminates.


The Analyst ◽  
2020 ◽  
Vol 145 (4) ◽  
pp. 1445-1456 ◽  
Author(s):  
Fabian Placzek ◽  
Eliana Cordero Bautista ◽  
Simon Kretschmer ◽  
Lara M. Wurster ◽  
Florian Knorr ◽  
...  

Characterization of bladder biopsies, using a combined fiber optic probe-based optical coherence tomography and Raman spectroscopy imaging system that allows a large field-of-view imaging and detection and grading of cancerous bladder lesions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3119
Author(s):  
Cristina L. Saratxaga ◽  
Jorge Bote ◽  
Juan F. Ortega-Morán ◽  
Artzai Picón ◽  
Elena Terradillos ◽  
...  

(1) Background: Clinicians demand new tools for early diagnosis and improved detection of colon lesions that are vital for patient prognosis. Optical coherence tomography (OCT) allows microscopical inspection of tissue and might serve as an optical biopsy method that could lead to in-situ diagnosis and treatment decisions; (2) Methods: A database of murine (rat) healthy, hyperplastic and neoplastic colonic samples with more than 94,000 images was acquired. A methodology that includes a data augmentation processing strategy and a deep learning model for automatic classification (benign vs. malignant) of OCT images is presented and validated over this dataset. Comparative evaluation is performed both over individual B-scan images and C-scan volumes; (3) Results: A model was trained and evaluated with the proposed methodology using six different data splits to present statistically significant results. Considering this, 0.9695 (±0.0141) sensitivity and 0.8094 (±0.1524) specificity were obtained when diagnosis was performed over B-scan images. On the other hand, 0.9821 (±0.0197) sensitivity and 0.7865 (±0.205) specificity were achieved when diagnosis was made considering all the images in the whole C-scan volume; (4) Conclusions: The proposed methodology based on deep learning showed great potential for the automatic characterization of colon polyps and future development of the optical biopsy paradigm.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1030
Author(s):  
Julie Lake ◽  
Catherine S. Storm ◽  
Mary B. Makarious ◽  
Sara Bandres-Ciga

Neurodegenerative diseases are etiologically and clinically heterogeneous conditions, often reflecting a spectrum of disease rather than well-defined disorders. The underlying molecular complexity of these diseases has made the discovery and validation of useful biomarkers challenging. The search of characteristic genetic and transcriptomic indicators for preclinical disease diagnosis, prognosis, or subtyping is an area of ongoing effort and interest. The next generation of biomarker studies holds promise by implementing meaningful longitudinal and multi-modal approaches in large scale biobank and healthcare system scale datasets. This work will only be possible in an open science framework. This review summarizes the current state of genetic and transcriptomic biomarkers in Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature and future directions.


Parasitology ◽  
2011 ◽  
Vol 139 (5) ◽  
pp. 651-668 ◽  
Author(s):  
S. BECKMANN ◽  
C. G. GREVELDING

SUMMARYIn parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veenstra TD ◽  

Identifying all the molecular components within a living cell is the first step into understanding how it functions. To further understand how a cell functions requires identifying the interactions that occur between these components. This fact is especially relevant for proteins. No protein within a human cell functions on its own without interacting with another biomolecule - usually another protein. While Protein-Protein Interactions (PPI) have historically been determined by examining a single protein per study, novel technologies developed over the past couple of decades are enabling high-throughput methods that aim to describe entire protein networks within cells. In this review, some of the technologies that have led to these developments are described along with applications of these techniques. Ultimately the goal of these technologies is to map out the entire circuitry of PPI within human cells to be able to predict the global consequences of perturbations to the cell system. This predictive capability will have major impacts on the future of both disease diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document