scholarly journals Development of an analytical model to predict oil reservoirs performance using mechanical waves propagation

Author(s):  
Hesham A. Abu Zaid ◽  
◽  
Sherif A. Akl ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
...  

The mechanical waves have been used as an unconventional enhanced oil recovery technique. It has been tested in many laboratory experiments as well as several field trials. This paper presents a robust forecasting model that can be used as an effective tool to predict the reservoir performance while applying seismic EOR technique. This model is developed by extending the wave induced fluid flow theory to account for the change in the reservoir characteristics as a result of wave application. A MATLAB program was developed based on the modified theory. The wave’s intensity, pressure, and energy dissipation spatial distributions are calculated. The portion of energy converted into thermal energy in the reservoir is assessed. The changes in reservoir properties due to temperature and pressure changes are considered. The incremental oil recovery and reduction in water production as a result of wave application are then calculated. The developed model was validated against actual performance of Liaohe oil field. The model results show that the wave application increases oil production from 33 to 47 ton/day and decreases water-oil ratio from 68 to 48%, which is close to the field measurements. A parametric analysis is performed to identify the important parameters that affect reservoir performance under seismic EOR. In addition, the study determines the optimum ranges of reservoir properties where this technique is most beneficial.

2020 ◽  
Vol 10 (8) ◽  
pp. 3925-3935
Author(s):  
Samin Raziperchikolaee ◽  
Srikanta Mishra

Abstract Evaluating reservoir performance could be challenging, especially when available data are only limited to pressures and rates from oil field production and/or injection wells. Numerical simulation is a typical approach to estimate reservoir properties using the history match process by reconciling field observations and model predictions. Performing numerical simulations can be computationally expensive by considering a large number of grids required to capture the spatial variation in geological properties, detailed structural complexity of the reservoir, and numerical time steps to cover different periods of oil recovery. In this work, a simplified physics-based model is used to estimate specific reservoir parameters during CO2 storage into a depleted oil reservoir. The governing equation is based on the integrated capacitance resistance model algorithm. A multivariate linear regression method is used for estimating reservoir parameters (injectivity index and compressibility). Synthetic scenarios were generated using a multiphase flow numerical simulator. Then, the results of the simplified physics-based model in terms of the estimated fluid compressibility were compared against the simulation results. CO2 injection data including bottom hole pressure and injection rate were also gathered from a depleted oil reef in Michigan Basin. A field application of the simplified physics-based model was presented to estimate above-mentioned parameters for the case of CO2 storage in a depleted oil reservoir in Michigan Basin. The results of this work show that this simple lumped parameter model can be used for a quick estimation of the specific reservoir parameters and its changes over the CO2 injection period.


2006 ◽  
Vol 9 (06) ◽  
pp. 664-673 ◽  
Author(s):  
Harry L. Chang ◽  
Xingguang Sui ◽  
Long Xiao ◽  
Zhidong Guo ◽  
Yuming Yao ◽  
...  

Summary The first large-scale colloidal dispersion gel (CDG) pilot test was conducted in the largest oil field in China, Daqing oil field. The project was initiated in May 1999, and injection of chemical slugs was completed in May 2003. This paper provides detailed descriptions of the gel-system characterization, chemical-slug optimization, project execution, performance analysis, injection facility design, and economics. The improvements of permeability variation and sweep efficiency were demonstrated by lower water cut, higher oil rate, improved injection profiles, and the increase of the total dissolved solids (TDS) in production wells. The ultimate incremental oil recovery (defined as the amount of oil recovered above the projected waterflood recovery at 98% water cut) in the pilot area would be approximately 15% of the original oil in place (OOIP). The economic analysis showed that the chemical costs were approximately U.S. $2.72 per barrel of incremental oil recovered. Results are presented in 15 tables and 8 figures. Introduction Achieving mobility control by increasing the injection fluid viscosity and achieving profile modification by adjusting the permeability variation in depth are two main methods of improving the sweep efficiency in highly heterogeneous and moderate viscous-oil reservoirs. In recent years (Wang et al. 1995, 2000, 2002; Guo et al. 2000), the addition of high-molecular-weight (MW) water-soluble polymers to injection water to increase viscosity has been applied successfully in the field on commercial scales. Weak gels, such as CDGs, formed with low-concentration polymers and small amounts of crosslinkers such as the trivalent cations aluminum (Al3+) and chromium (Cr3+) also have been applied successfully for in-depth profile modification (Fielding et al. 1994; Smith 1995; Smith and Mack 1997). Typical behaviors of CDGs and testing methods are given in the literature (Smith 1989; Ranganathan et al. 1997; Rocha et al. 1989; Seright 1994). The giant Daqing oil field is located in the far northeast part of China. The majority of the reservoir belongs to a lacustrine sedimentary deposit with multiple intervals. The combination of heterogeneous sand layers [Dykstra-Parsons (1950) heterogeneity indices above 0.5], medium oil viscosities (9 to 11 cp), mild reservoir temperatures (~45°C), and low-salinity reservoir brines [5,000 to 7,000 parts per million (ppm)] makes it a good candidate for chemical enhanced-oil-recovery processes. Daqing has successfully implemented commercial-scale polymer flooding (PF) since the early 1990s (Chang et al. 2006). Because the PF process is designed primarily to improve the mobility ratio (Chang 1978), additional oil may be recovered by using weak gels to further improve the vertical sweep. Along with the successes of PF in the Daqing oil field, two undesirable results were also observed:high concentrations of polymer produced in production wells owing to the injection of large amounts of polymer (~1000 ppm and 50% pore volume) andthe fast decline in oil rates and increase in water cuts after polymer injection was terminated. In 1997, a joint laboratory study between the Daqing oil field and Tiorco Inc. was conducted to investigate the potential of using the CDG process, or the CDG process with PF, to further improve the recovery efficiency, lower the polymer production in producing wells, and prolong the flood life. The joint laboratory study was completed in 1998 with encouraging results (Smith et al. 2000). Additional laboratory studies to further characterize the CDG gellation process, optimize the formulation, and investigate the degradation mechanisms were conducted in the Daqing field laboratories before the pilot test. A simplistic model was used to optimize the slug designs and predict incremental oil recovery. Initial designs called for a 25% pore volume (Vp) CDG slug with 700 ppm polymer and the polymer-to-crosslinker ratio (P/X) of 20 in a single inverted five-spot patten. Predicted incremental recovery was approximately 9% of OOIP.


2021 ◽  
Author(s):  
Elias R. Acosta ◽  
◽  
Bhagwanpersad Nandlal ◽  
Ryan Harripersad ◽  
◽  
...  

This research proposed an alternative method for determining the saturation exponent (n) by finding the best correlations for the heterogeneity index using available core data and considering wettability changes. The log curves of the variable n were estimated, and the effect on the water saturation (Sw) calculations and the Stock Tank Oil Initially In Place (STOIIP) in the Tambaredjo (TAM) oil field was analyzed. Core data were employed to obtain the relationship between n and heterogeneity using cross-plots against several heterogeneity indices, reservoir properties, and pore throat size. After filtering the data, the clay volume (Vcl), shale volume, silt volume, basic petrophysical property index (BPPI), net reservoir index, pore grain volume ratio, and rock texture were defined as the best matches. Their modified/improved equations were applied to the log data and evaluated. The n related to Vcl was the best selection based on the criteria of depth variations and logical responses to the lithology. The Sw model in this field showed certain log readings (high resistivity [Rt] reading ≥ 500 ohm.m) that infer these intervals to be probable inverse-wet (oil-wet). The cross-plots (Rt vs. Vcl; Rt vs. density [RHOB]; Rt vs. total porosity [PHIT]) were used to discard the lithologies related to a high Rt (e.g., lignites and calcareous rocks) and to correct Sw when these resulted in values below the estimated irreducible water saturation (Swir). The Sw calculations using the Indonesian equation were updated to incorporate n as a variable (log curves), comparing it with Sw from the core data and previous calculations using a fixed average value (n = 1.82) from the core data. An integrated approach was used to determine n, which is related to the reservoir’s heterogeneity and wettability changes. The values of n for high Rt (n > 2) intervals ranged from 2.3 to 8.5, which is not close to the field average n value (1.82). Specific correlations were found by discriminating Swir (Swir < 15%), (Swir 15%–19%), and Swir (> 19%). The results showed that using n as a variable parameter improved Sw from 39.5% to 36.5% average in the T1 and T2 sands, showing a better fit than the core data average and increasing the STOIIP estimations by 6.81%. This represents now a primary oil recovery of 12.1%, closer to the expected value for these reservoirs. Although many studies have been done on n determination and its effect on Sw calculations, using average values over a whole field is still a common practice regardless of heterogeneity and wettability considerations. This study proposed a method to include the formation of heterogeneity and wettability changes in n determination, allowing a more reliable Sw determination as demonstrated in the TAM oil field in Suriname.


2002 ◽  
Vol 5 (03) ◽  
pp. 190-196 ◽  
Author(s):  
R.L. Kaufman ◽  
H. Dashti ◽  
C.S. Kabir ◽  
J.M. Pederson ◽  
M.S. Moon ◽  
...  

Summary This study reports reservoir geochemistry findings on the Greater Burgan field by a multidisciplinary, multiorganizational team. The major objectives were to determine if unique oil fingerprints could be identified for the major producing reservoirs and if oil fingerprinting could be used to identify wells with mixed production because of wellbore mechanical problems. Three potential reservoir geochemistry applications in the Burgan field are:evaluation of vertical and lateral hydrocarbon continuity,identification of production problems caused by leaky tubing strings or leaks behind casing, andallocation of production to individual zones in commingled wells. Results from this study show that while oils from the major reservoir units are different from each other, the differences are small. Furthermore, a number of wells were identified in which mixed oils were produced because of previous mechanical problems. Both transient pressure testing and distributed pressure measurements provided corroborative evidence of some of these findings. Other data show that Third Burgan oils are different in the Burgan and Magwa sectors, suggesting a lack of communication across the central graben fault complex. This finding supports the geologic model for the ongoing reservoir simulation studies. Success of the geochemistry project has spawned enlargement of the study in both size and scope. Introduction This paper describes the results from a joint project by Chevron- Texaco Overseas Petroleum, the Kuwait Oil Co. (KOC), and the Kuwait Inst. for Scientific Research (KISR). Approximately 50 oils were analyzed to assess the feasibility of applying reservoir geochemistry in the Burgan field. All analytical work was performed at KISR. In this study, we report on a subset of these oils that contain primarily single-zone production samples. Reservoir geochemistry involves the study of reservoir fluids (oil, gas, and water) to determine reservoir properties and to understand the filling history of the field. Many established methods for exploration geochemistry can be used for this purpose. Reservoir geochemistry differs from other reservoir characterization methods by dealing primarily with the detailed molecular properties of the fluids in the C1-C35+ region rather than the physical properties. Larter and Aplin1 offer a review of many of these methods. Geochemistry techniques have been used to help solve reservoir problems for many years. During this time, oil geochemistry has been applied to the following reservoir characterization and management problems:Evaluation of hydrocarbon continuity.Analysis of commingled oils for production allocation.Identification of wellbore mechanical problems.Evaluation of workovers.Production monitoring for enhanced oil recovery (EOR).Identification of reservoir fluid type from rock extracts.Characterization of reservoir bitumens and tar mats. Many different analytical techniques have been used in these reservoir geochemistry studies. One of the most widely used is gas chromatography (GC). When used for oil correlation, it is often referred to as oil fingerprinting. In most reservoirs, the oil composition represents a unique fingerprint of the oil that can be used for correlation purposes.2 This is an inexpensive method and can be very cost-effective when compared to many production-logging methods. Of course, we recommend verifying this technique with other methods before reducing these more costly measurements. A number of papers have documented the application of oil fingerprinting to Middle East oil fields.3–7 Based on these studies, we felt that there was a high probability of success in using reservoir geochemistry in Kuwait's Burgan field. Three applications were of specific importance. Reservoir Continuity. The Burgan field contains several major producing horizons: the Wara, Third Burgan (Upper, Middle, and Lower), and Fourth Burgan reservoirs. Each of these is further subdivided into several reservoir layers. Vertical compartmentalization of the field, both in geologic and production time frames, is possible. In addition, a number of faults have been mapped in the field, and these may act as lateral barriers to fluid flow. The most significant faulting occurs in the central graben fault complex that separates the Burgan and Magwa/Ahmadi sectors of the field. Oil fingerprinting, along with other oilfield data, will be used to evaluate vertical and lateral compartmentalization in the field. Tubing-String Leaks. In many older fields, the integrity of casing strings and cement bonding is often a problem. If multiple pay zones are present, oil may leak into or behind the casing string from zones other than the completion interval. Many wells in the Burgan field produce from two reservoirs. Some wells, for example, produce Wara oil up the annulus and Third Burgan oil up the tubing string. When fingerprints of the individual oil zones have been identified, wellhead samples of the two production streams can be analyzed to determine if a mechanical problem is present.2,8 Production Allocation. It has been shown that the relative proportions of individual oils in an oil mixture can be determined with GC.9,10 Using this method to analyze production streams provides a rapid means of production allocation and does not require that wells be taken off production. In the Burgan field, this method will be applied to evaluate the extent of oil mixing either in the wellbore, owing to mechanical problems, or in the reservoir because of crossflow from deeper, higher-pressure reservoirs. The Burgan Oil Field The Greater Burgan oil field lies within the Arabian basin in the state of Kuwait. General reviews of the geology and producing history of the field are described by Brennan11 and by Kirby et al.12 The field is subdivided into the Burgan, Magwa, and Ahmadi sectors, based on the presence of three structural domes. Fig. 1 shows that the northern Magwa and Ahmadi sectors are separated from the southern Burgan sector by a central graben fault complex.


2021 ◽  
Author(s):  
Mohamad Yousef Alklih ◽  
Nidhal Mohamed Aljneibi ◽  
Karem Alejandra Khan ◽  
Melike Dilsiz

Abstract Miscible HC-WAG injection is a globally implemented EOR method and seems robust in so many cases. Some of the largest HC-WAG projects are found in major carbonate oil reservoirs in the Middle-East, with miscibility being the first measure to expect the success of a HC-WAG injection. Yet, several miscible injection projects reported disappointing outcomes and challenging implementation that reduces the economic attractiveness of the miscible processes. To date, there are still some arguments on the interpretation of laboratory and field data and predictive modeling. For a miscible flood, to be an efficient process for a given reservoir, several conditions must be satisfied; given that the incremental oil recovery is largely dependent on reservoir properties and fluid characteristic. Experiences gained from a miscible rich HC-WAG project in Abu Dhabi, implemented since 2006, indicate that an incremental recovery of 10% of the original oil in place can be achieved, compared to water flooding. However, experiences also show that several complexities are being faced, including but not limited to, issues of water injectivity in the mixed wettability nature of the reservoir, achieving miscibility conditions full field, maintaining VRR and corresponding flow behavior, suitability of monitoring strategy, UTC optimization efforts by gas curtailment and most importantly challenges of modeling the miscibility behavior across the reservoir. A number of mitigation plans and actions are put in place to chase the positive impacts of enhanced oil recovery by HC-WAG injection. If gas injection is controlled for gravity and dissolution along with proper understanding on the limitations of WAG, then miscible flood will lead to excellent results in the field. The low frequency of certain reservoir monitoring activities, hence less available data for assessment and modeling, can severely bound the benefits of HC-WAG and make it more difficult to justify the injection of gas, particularly in those days when domestic gas market arises. This work aims to discuss the lessons learned from the ongoing development of HC-WAG and attempts to comprehend miscible flood assessment methods.


2021 ◽  
Vol 11 (3) ◽  
pp. 1339-1352
Author(s):  
Mahamat Tahir Abdramane Mahamat Zene ◽  
Nurul Hasan ◽  
Ruizhong Jiang ◽  
Guan Zhenliang ◽  
Nurafiqah Abdullah

AbstractThe research of the current study is primarily focused on evaluating the reservoir performance by utilizing waterflood technique, based on a case study at Lanea oil field located in Chad; various mechanisms along with approaches were used in considering the best suitable pattern for waterflooding. All the simulation work was compared against a base case, where there was no involvement of water injection. Moreover, for the base case, a significant amount of oil left behind and cannot be swept, because of lower reservoir pressure at the downhill. The recovery factor obtained was in the range of 14.5–15% since 2010, and in order to enhance the oil production, an injection well was applied to boost the reservoir pressure; oil recovery is improved. In addition, sensitivity analysis study was performed to reach the optimum production behavior achieved by possible EOR method. Parameters, such as grid test, injection position, proper selection production location, permeability, and voidage substitution, were defined in the simulation study.


2009 ◽  
Vol 12 (03) ◽  
pp. 427-432 ◽  
Author(s):  
Kristine Spildo ◽  
Arne Skauge ◽  
Morten G. Aarra ◽  
Medad T. Tweheyo

Summary Field trials have demonstrated increased oil recovery by injection of colloidal dispersion gels (CDG). Characteristics of these trials include reservoirs characterized by high permeability heterogeneity and low injection water salinities. The enhanced oil recovery (EOR) has been attributed to improved waterflood sweep in the rather heterogeneous reservoirs where this method has been applied. This study presents an investigation of the applicability of CDG at higher salinity, and particularly sandstone North Sea oil reservoir applications. Earlier laboratory work and field trials involving CDG have involved relatively low reservoir temperatures and low injection water salinity (~5000 µg/g). This study involves experiments at high temperature (85°C) and salinity (~35 000 µg/g). When crosslinking is complete, the CDG solutions have slightly lower viscosities than the corresponding polymer solutions, and they also appear to be more stable at high temperatures. In preparation for a field pilot, several coreflood experiments have been conducted. Significant increase in oil recovery resulting from CDG injection has increased the interest for a field trial in a North Sea oil field. On average, 40% of the remaining oil after waterflooding was produced by CDG injection in linear corefloods, and a mechanism of microscopic diversion is proposed to explain these results. Our hypothesis is that CDG injection can contribute as an EOR method, giving both a microscopic diversion and a macroscopic sweep.


2021 ◽  
Vol 23 (08) ◽  
pp. 751-761
Author(s):  
Abdelrahman El-Diasty ◽  
◽  
Hamid Khattab ◽  
Mahmoud Tantawy ◽  
◽  
...  

The use of nanofluids has been investigated and established for several applications in the oil and gas industry. Using nanoparticles for Enhanced Oil Recovery (EOR) applications underlines their small size in comparison with the size of the rock pore throats; consequently, they could easily transport into porous rocks with minimum retention effect and permeability reduction. Nanoparticles can significantly increase the oil recovery by enhancing both the fluid properties and fluid-rock interaction properties. In this study, commercial silica nanoparticles dispersions were used in standard core flooding experiments to evaluate the effect of the nanofluid injection on the incremental oil recovery. This will open the door for taking the nanotechnology from the lab to the oil field.


Sign in / Sign up

Export Citation Format

Share Document