scholarly journals Pathogenic mutations in the chromokinesin KIF22 disrupt anaphase chromosome segregation

2021 ◽  
Author(s):  
Alex F Thompson ◽  
Patrick R Blackburn ◽  
Dusica Babovic-Vuksanovic ◽  
Jane B Lian ◽  
Eric W Klee ◽  
...  

The chromokinesin KIF22 uses plus end-directed motility and direct binding to chromosome arms to generate pushing forces that contribute to mitotic chromosome congression and alignment. Mutations in the motor domain of KIF22 have been identified in patients with abnormal skeletal development, and we report the identification of a patient with a novel mutation in the coiled-coil domain of the KIF22 tail. The mechanism by which these mutations affect development is unknown. We assessed whether pathogenic mutations affect the function of KIF22 in mitosis and demonstrate that mutations do not result in a loss of KIF22 function. Pathogenic mutations did not alter the localization or prometaphase function of KIF22. Instead, mutations disrupted chromosome segregation in anaphase, resulting in reduced proliferation, abnormal daughter cell nuclear morphology and, in a subset of cells, cytokinesis failure. This phenotype could be explained by a failure of KIF22 to inactivate in anaphase. Consistent with this model, a phosphomimetic mutation, which constitutively activates the motor, phenocopied the effects of pathogenic mutations. These findings offer insight into the mechanism by which mutations in KIF22 may affect human development, the balance between polar ejection forces and antiparallel microtubule sliding in anaphase, and potential mechanisms of KIF22 regulation.

2012 ◽  
Vol 23 (12) ◽  
pp. 2275-2291 ◽  
Author(s):  
Friederike Althoff ◽  
Roger E. Karess ◽  
Christian F. Lehner

Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.


2013 ◽  
Vol 24 (22) ◽  
pp. 3483-3495 ◽  
Author(s):  
Caelin Cubeñas-Potts ◽  
Jacqueline D. Goeres ◽  
Michael J. Matunis

Sumoylation of centromere, kinetochore, and other mitotic chromosome-associated proteins is essential for chromosome segregation. The mechanisms regulating spatial and temporal sumoylation of proteins in mitosis, however, are not well understood. Here we show that the small ubiquitin-related modifier (SUMO)–specific isopeptidases SENP1 and SENP2 are targeted to kinetochores in mitosis. SENP2 targeting occurs through a mechanism dependent on the Nup107-160 subcomplex of the nuclear pore complex and is modulated through interactions with karyopherin α. Overexpression of SENP2, but not other SUMO-specific isopeptidases, causes a defect in chromosome congression that depends on its precise kinetochore targeting. By altering SENP1 kinetochore associations, however, this effect on chromosome congression could be phenocopied. In contrast, RNA interference–mediated knockdown of SENP1 delays sister chromatid separation at metaphase, whereas SENP2 knockdown produces no detectable phenotypes. Our findings indicate that chromosome segregation depends on precise spatial and temporal control of sumoylation in mitosis and that SENP1 and SENP2 are important mediators of this control.


2020 ◽  
Author(s):  
Xiao Guo ◽  
Yenni A. Garcia ◽  
Ivan Ramirez ◽  
Erick F. Velasquez ◽  
Lucy W. Gao ◽  
...  

SUMMARYHuman cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. Here we show that the dual specificity phosphatase DUSP7 is important for regulating chromosome alignment. DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytic dead mutants, led to a marked decrease in phopho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, chemical inhibition of the MEK kinase that phosphorylates ERK2 or ERK2 itself led to chromosome alignment defects. Our results support a model where MEK phosphorylation and DUSP7 dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.


Author(s):  
A. Laughney ◽  
J. Murnane ◽  
G. Genovese ◽  
S. Elizalde ◽  
D. Compton ◽  
...  

2011 ◽  
Vol 44 (5) ◽  
pp. 391-400 ◽  
Author(s):  
P. Silva ◽  
J. Barbosa ◽  
A. V. Nascimento ◽  
J. Faria ◽  
R. Reis ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4691-4702 ◽  
Author(s):  
Z Xiao ◽  
J T McGrew ◽  
A J Schroeder ◽  
M Fitzgerald-Hayes

By monitoring the mitotic transmission of a marked chromosome bearing a defective centromere, we have identified conditional alleles of two genes involved in chromosome segregation (cse). Mutations in CSE1 and CSE2 have a greater effect on the segregation of chromosomes carrying mutant centromeres than on the segregation of chromosomes with wild-type centromeres. In addition, the cse mutations cause predominantly nondisjunction rather than loss events but do not cause a detectable increase in mitotic recombination. At the restrictive temperature, cse1 and cse2 mutants accumulate large-budded cells, with a significant fraction exhibiting aberrant binucleate morphologies. We cloned the CSE1 and CSE2 genes by complementation of the cold-sensitive phenotypes. Physical and genetic mapping data indicate that CSE1 is linked to HAP2 on the left arm of chromosome VII and CSE2 is adjacent to PRP2 on chromosome XIV. CSE1 is essential and encodes a novel 109-kDa protein. CSE2 encodes a 17-kDa protein with a putative basic-region leucine zipper motif. Disruption of CSE2 causes chromosome missegregation, conditional lethality, and slow growth at the permissive temperature.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1167
Author(s):  
Manjinder S. Cheema ◽  
Katrina V. Good ◽  
Bohyun Kim ◽  
Heddy Soufari ◽  
Connor O’Sullivan ◽  
...  

The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription. However, its functional involvement in gene expression is controversial. Moreover, the variant in several groups of metazoan organisms consists of two main isoforms (H2A.Z-1 and H2A.Z-2) that differ in a few (3–6) amino acids. They comprise the main topic of this review, starting from the events that led to their identification, what is currently known about them, followed by further experimental, structural, and functional insight into their roles. Despite their structural differences, a direct correlation to their functional variability remains enigmatic. As all of this is being elucidated, it appears that a strong functional involvement of isoform variability may be connected to development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuzhu Di ◽  
Yanan Jiang ◽  
Xiuyun Shen ◽  
Jing Liu ◽  
Yang Gao ◽  
...  

Esophageal cancer (EC) is one of the commonest human cancers, which accompany high morbidity. MicroRNAs (miRNAs) play a pivotal role in various cancers, including EC. Our research aimed to reveal the function and mechanism of miR-135b-5p. Our research identified that miR-135b-5p was elevated in EC samples from TCGA database. Correspondingly real-time PCR assay also showed the miR-135b-5p is also higher expressed in Eca109, EC9706, KYSE150 cells than normal esophageal epithelial cells (Het-1A). CCK8, Edu, wound healing, Transwell assay, and western blot demonstrated miR-135b-5p inhibition suppresses proliferation, invasion, migration and promoted the apoptosis in Eca109 and EC9706 cells. Moreover, the miR-135b-5p inhibition also inhibited xenograft lump growth. We then predicted the complementary gene of miR-135b-5p using miRTarBase, TargetScan, and DIANA-microT. TXNIP was estimated as a complementary gene for miR-135b-5p. Luciferase report assay verified the direct binding site for miR-135b-5p and TXNIP. Real-time PCR and western blot assays showed that the inhibition of miR-135b-5p remarkably enhanced the levels of TXNIP in Eca109 and EC9706 cells. Furthermore, cisplatin (cis-diamminedichloroplatinum II, DDP) decreased miR-135b-5p expression and increased TXNIP expression. Enhanced expression of miR-135b-5p attenuated the inhibitory ability of cisplatin (cis-diamminedichloroplatinum II, DDP) in Eca109 cells, accompanied by TXNIP downregulation. In conclusion, the downregulation of miR-135b-5p suppresses the progression of EC through targeting TXNIP. MiR-135b-5p/TXNIP pathway contributes to the anti-tumor effect of DDP. These findings may provide new insight into the treatment of EC.


2020 ◽  
Vol 219 (4) ◽  
Author(s):  
Gisela Cairo ◽  
Anne M. MacKenzie ◽  
Soni Lacefield

Accurate chromosome segregation depends on the proper attachment of kinetochores to spindle microtubules before anaphase onset. The Ipl1/Aurora B kinase corrects improper attachments by phosphorylating kinetochore components and so releasing aberrant kinetochore–microtubule interactions. The localization of Ipl1 to kinetochores in budding yeast depends upon multiple pathways, including the Bub1–Bub3 pathway. We show here that in meiosis, Bub3 is crucial for correction of attachment errors. Depletion of Bub3 results in reduced levels of kinetochore-localized Ipl1 and concomitant massive chromosome missegregation caused by incorrect chromosome–spindle attachments. Depletion of Bub3 also results in shorter metaphase I and metaphase II due to premature localization of protein phosphatase 1 (PP1) to kinetochores, which antagonizes Ipl1-mediated phosphorylation. We propose a new role for the Bub1–Bub3 pathway in maintaining the balance between kinetochore localization of Ipl1 and PP1, a balance that is essential for accurate meiotic chromosome segregation and timely anaphase onset.


Sign in / Sign up

Export Citation Format

Share Document