human accelerated regions
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Chaitanya Erady ◽  
Krishna Amin ◽  
Temiloluwa O. A. E. Onilogbo ◽  
Jakub Tomasik ◽  
Rebekah Jukes-Jones ◽  
...  

AbstractSchizophrenia (SCZ) and bipolar disorder are debilitating neuropsychiatric disorders arising from a combination of environmental and genetic factors. Novel open reading frames (nORFs) are genomic loci that give rise to previously uncharacterized transcripts and protein products. In our previous work, we have shown that nORFs can be biologically regulated and that they may play a role in cancer and rare diseases. More importantly, we have shown that nORFs may emerge in accelerated regions of the genome giving rise to species-specific functions. We hypothesize that nORFs represent a potentially important group of biological factors that may contribute to SCZ and bipolar disorder pathophysiology. Human accelerated regions (HARs) are genomic features showing human-lineage-specific rapid evolution that may be involved in biological regulation and have additionally been found to associate with SCZ genes. Transposable elements (TEs) are another set of genomic features that have been shown to regulate gene expression. As with HARs, their relevance to SCZ has also been suggested. Here, nORFs are investigated in the context of HARs and TEs. This work shows that nORFs whose expression is disrupted in SCZ and bipolar disorder are in close proximity to HARs and TEs and that some of them are significantly associated with SCZ and bipolar disorder genomic hotspots. We also show that nORF encoded proteins can form structures and potentially constitute novel drug targets.


Neuron ◽  
2021 ◽  
Author(s):  
Kelly M. Girskis ◽  
Andrew B. Stergachis ◽  
Ellen M. DeGennaro ◽  
Ryan N. Doan ◽  
Xuyu Qian ◽  
...  

2021 ◽  
Author(s):  
Upasana Bhattacharyya ◽  
Prachi Kukshal ◽  
Triptish Bhatia ◽  
Smita N Deshpande ◽  
B.K Thelma

AbstractCognition is believed to be a product of human evolution, while schizophrenia is ascribed as the by-product with cognitive impairment as it’s genetically mediated endophenotype. Genomic loci associated with these traits are enriched with recent evolutionary markers such as Human accelerated regions (HARs). HARs are markedly different in humans since their divergence with chimpanzees and mostly regulate gene expression by binding to transcription factors and/or modulating chromatin interactions. We hypothesize that variants within HARs may alter such functions and thus contribute to disease pathogenesis. 49 systematically prioritized variants from 2737 genome-wide HARs were genotyped in a north-Indian schizophrenia cohort (331 cases, 235 controls). Six variants were significantly associated with cognitive impairment in schizophrenia, thirteen with general cognition in healthy individuals. These variants were mapped to 122 genes; predicted to alter 70 transcription factors binding sites and overlapped with promoters, enhancers and/or repressors. These genes and TFs are implicated in neurocognitive phenotypes, autism, schizophrenia and bipolar disorders; a few are targets of common or repurposable antipsychotics suggesting their draggability; and enriched for immune response and brain developmental pathways. Immune response has been more strongly targeted by natural selection during human evolution and has a prominent role in neurodevelopment. Thus, its disruption may have deleterious consequences for neuronal and cognitive functions. Importantly, among the 15 associated SNPs, 12 showed association in several independent GWASs of different neurocognitive functions. Further analysis of HARs may be valuable to understand their role in cognition biology and identify improved therapeutics for schizophrenia.


2021 ◽  
Author(s):  
Andrew R. Norman ◽  
Ann H. Ryu ◽  
Kirsty Jamieson ◽  
Sean Thomas ◽  
Yin Shen ◽  
...  

ABSTRACTHuman accelerated regions (HARs) are sequences that have evolved at an accelerated rate in the human lineage. Some HARs are developmental enhancers. We used a massively parallel reporter assay (MPRA) to identify HARs with enhancer activity in a mammalian testis cell line. A subset of HARs exhibited differential activity between the human and chimpanzee orthologs, representing candidates for underlying unique human male reproductive biology. We further characterized one of these candidate testis enhancers, 2xHAR.238. CRISPR/Cas9-mediated deletion in a testis cell line and mice revealed that 2xHAR.238 enhances expression of Gli2, encoding a Hedgehog pathway effector, in testis Leydig cells. 4C-seq revealed that 2xHAR.238 contacts the Gli2 promoter, consistent with enhancer function. In adult male mice, deletion of 2xHAR.238 disrupted mouse male-typical behavior and male interest in female odor. Combined, our work identifies a HAR that promotes the expression of Gli2 in Leydig cells and may have contributed to the evolution of human male reproductive biology.


2020 ◽  
Vol 118 (2) ◽  
pp. e2007049118
Author(s):  
Severin Uebbing ◽  
Jake Gockley ◽  
Steven K. Reilly ◽  
Acadia A. Kocher ◽  
Evan Geller ◽  
...  

Genetic changes that altered the function of gene regulatory elements have been implicated in the evolution of human traits such as the expansion of the cerebral cortex. However, identifying the particular changes that modified regulatory activity during human evolution remain challenging. Here we used massively parallel enhancer assays in neural stem cells to quantify the functional impact of >32,000 human-specific substitutions in >4,300 human accelerated regions (HARs) and human gain enhancers (HGEs), which include enhancers with novel activities in humans. We found that >30% of active HARs and HGEs exhibited differential activity between human and chimpanzee. We isolated the effects of human-specific substitutions from background genetic variation to identify the effects of genetic changes most relevant to human evolution. We found that substitutions interacted in both additive and nonadditive ways to modify enhancer function. Substitutions within HARs, which are highly constrained compared to HGEs, showed smaller effects on enhancer activity, suggesting that the impact of human-specific substitutions is buffered in enhancers with constrained ancestral functions. Our findings yield insight into how human-specific genetic changes altered enhancer function and provide a rich set of candidates for studies of regulatory evolution in humans.


Author(s):  
Upasana Bhattacharyya ◽  
Smita N Deshpande ◽  
Triptish Bhatia ◽  
B K Thelma

Abstract The persistence of schizophrenia in human populations at a high prevalence and with a large heritability estimate despite reduced fertility and increased mortality rate is a Darwinian paradox. This may be likely if the genomic components that predispose to schizophrenia are also advantageous for the acquisition of important human traits, such as language and cognition. Accordingly, an emerging group of genomic markers of recent evolution in humans, namely human accelerated regions (HARs), since our divergence from chimpanzees, are gaining importance for neurodevelopmental disorders, such as schizophrenia. We hypothesize that variants within HARs may affect the expression of genes under their control, thus contributing to disease etiology. A total of 49 HAR single nucleotide polymorphisms (SNPs) were prioritized from the complete repertoire of HARs (n = 2737) based on their functional relevance and prevalence in the South Asian population. Test of association using 2 independent schizophrenia case-control cohorts of north Indian ethnicity (discovery: n = 930; replication: n = 1104) revealed 3 SNPs (rs3800926, rs3801844, and rs764453) from chromosome 7 and rs77047799 from chromosome 3 to be significantly associated (combined analysis: Bonferroni corrected P < .002–.000004). Of note, these SNPs were found to alter the expression of neurodevelopmental genes such as SLC25A13, MAD1L1, and ULK4; a few from the HOX gene family; and a few genes that are implicated in mitochondrial function. These SNPs may most likely alter binding sites of transcription factors, including TFCP2, MAFK, SREBF2, E2F1, and/or methylation signatures around these genes. These findings reiterate a neurodevelopmental basis of schizophrenia and also open up a promising avenue to investigate HAR-mediated mitochondrial dysfunction in schizophrenia etiology.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1225 ◽  
Author(s):  
Yukiko Takahashi ◽  
Tomoyoshi Terada ◽  
Yoshinori Muto

Delirium is a complex pathophysiological process, and multiple contributing mechanisms have been identified. However, it is largely unclear how the genes associated with delirium contribute and which of them play key roles. In this study, the genes associated with delirium were retrieved from the Comparative Toxicogenomics Database (CTD) and integrated through a protein–protein interaction (PPI) network. Delirium-associated genes formed a highly interconnected PPI subnetwork, indicating a high tendency to interact and agglomerate. Using the Molecular Complex Detection (MCODE) algorithm, we identified the top two delirium-relevant network modules, M1 and M5, that have the most significant enrichments for the delirium-related gene sets. Functional enrichment analysis showed that genes related to neurotransmitter receptor activity were enriched in both modules. Moreover, analyses with genes located in human accelerated regions (HARs) provided evidence that HAR-Brain genes were overrepresented in the delirium-relevant network modules. We found that four of the HAR-Brain genes, namely APP, PLCB1, NPY, and HTR2A, in the M1 module were highly connected and appeared to exhibit hub properties, which might play vital roles in delirium development. Further understanding of the function of the identified modules and member genes could help to identify therapeutic intervention targets and diagnostic biomarkers for delirium.


2019 ◽  
Author(s):  
Severin Uebbing ◽  
Jake Gockley ◽  
Steven K. Reilly ◽  
Acadia A. Kocher ◽  
Evan Geller ◽  
...  

AbstractGenetic changes that altered the function of gene regulatory elements have been implicated in the evolution of the human brain. However, identifying the particular changes that modified regulatory activity during neurodevelopment remains challenging. Here we used massively parallel enhancer assays in human neural stem cells to measure the impact of 32,776 human-specific substitutions on enhancer activity in 1,363 Human Accelerated Regions (HARs) and 3,027 Human Gain Enhancers (HGEs), which include enhancers with novel activities in humans. We found that 31.9% of active HARs and 36.4% of active HGEs exhibited differential activity between human and chimpanzee. This enabled us to isolate the effects of 401 human-specific substitutions from other types of genetic variation in HARs and HGEs. Substitutions acted in both an additive and non-additive manner to alter enhancer activity. Human-specific substitutions altered predicted binding sites for a specific set of human transcription factors (TFs) that were a subset of TF binding sites associated with enhancer activity in our assay. Substitutions within HARs, which are overall highly constrained compared to HGEs, showed smaller effects on enhancer activity, suggesting that the impact of human-specific substitutions may be buffered in enhancers with constrained ancestral functions. Our findings yield insight into the mechanisms by which human-specific genetic changes impact enhancer function and provide a rich set of candidates for experimental studies of regulatory evolution in humans.


Sign in / Sign up

Export Citation Format

Share Document