dna transposon
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 15)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Robert Lehmann ◽  
Aleš Kovařík ◽  
Konrad Ocalewicz ◽  
Lech Kirtiklis ◽  
Andrea Zuccolo ◽  
...  

Abstract Genome sizes of eukaryotic organisms vary substantially, with whole genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and U. pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5-5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in Umbra limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lianyu Lin ◽  
Anupma Sharma ◽  
Qingyi Yu

Abstract Background Miniature inverted-repeat transposable elements (MITEs) are non-autonomous DNA transposable elements that play important roles in genome organization and evolution. Genome-wide identification and characterization of MITEs provide essential information for understanding genome structure and evolution. Results We performed genome-wide identification and characterization of MITEs in the pineapple genome. The top two MITE families, accounting for 29.39% of the total MITEs and 3.86% of the pineapple genome, have insertion preference in (TA) n dinucleotide microsatellite regions. We therefore named these MITEs A. comosus microsatellite-associated MITEs (Ac-mMITEs). The two Ac-mMITE families, Ac-mMITE-1 and Ac-mMITE-2, shared sequence similarity in the terminal inverted repeat (TIR) regions, suggesting that these two Ac-mMITE families might be derived from a common or closely related autonomous elements. The Ac-mMITEs are frequently clustered via adjacent insertions. Among the 21,994 full-length Ac-mMITEs, 46.1% of them were present in clusters. By analyzing the Ac-mMITEs without (TA) n microsatellite flanking sequences, we found that Ac-mMITEs were likely derived from Mutator-like DNA transposon. Ac-MITEs showed highly polymorphic insertion sites between cultivated pineapples and their wild relatives. To better understand the evolutionary history of Ac-mMITEs, we filtered and performed comparative analysis on the two distinct groups of Ac-mMITEs, microsatellite-targeting MITEs (mt-MITEs) that are flanked by dinucleotide microsatellites on both sides and mutator-like MITEs (ml-MITEs) that contain 9/10 bp TSDs. Epigenetic analysis revealed a lower level of host-induced silencing on the mt-MITEs in comparison to the ml-MITEs, which partially explained the significantly higher abundance of mt-MITEs in pineapple genome. The mt-MITEs and ml-MITEs exhibited differential insertion preference to gene-related regions and RNA-seq analysis revealed their differential influences on expression regulation of nearby genes. Conclusions Ac-mMITEs are the most abundant MITEs in the pineapple genome and they were likely derived from Mutator-like DNA transposon. Preferential insertion in (TA) n microsatellite regions of Ac-mMITEs occurred recently and is likely the result of damage-limiting strategy adapted by Ac-mMITEs during co-evolution with their host. Insertion in (TA) n microsatellite regions might also have promoted the amplification of mt-MITEs. In addition, mt-MITEs showed no or negligible impact on nearby gene expression, which may help them escape genome control and lead to their amplification.


2021 ◽  
Vol 17 (9) ◽  
pp. 20210342
Author(s):  
James D. Galbraith ◽  
Alastair J. Ludington ◽  
Kate L. Sanders ◽  
Alexander Suh ◽  
David L. Adelson

Transposable elements (TEs) are self-replicating genetic sequences and are often described as important ‘drivers of evolution’. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits ( Laticauda ), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15–25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8–12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.


2021 ◽  
Author(s):  
James D Galbraith ◽  
Alastair J Ludington ◽  
Kate L Sanders ◽  
Alexander SJ Suh ◽  
David L Adelson

Transposable elements (TEs) are self replicating genetic sequences and are often described as important drivers of evolution. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions will be neutral or harmful, therefore host genomes have evolved machinery to supress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonise new genomes, and since new hosts may not be able to shut them down, these TEs may proliferate rapidly. Here we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids ~15-25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8-12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.


2021 ◽  
Author(s):  
Robert Lehmann ◽  
Ales Kovarik ◽  
Konrad Ocalewicz ◽  
Lech Kirtiklis ◽  
Andrea Zuccolo ◽  
...  

Genome sizes of eukaryotic organisms vary substantially, with whole genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and U. pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5-5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in Umbra limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by extensive DNA transposon expansion without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.


2020 ◽  
Author(s):  
Wanxiangfu Tang ◽  
Ping Liang

AbstractMobile elements (MEs) can be divided into two major classes based on their transposition mechanisms as retrotransposons and DNA transposons. DNA transposons move in the genomes directly in the form of DNA in a cut-and-paste style, while retrotransposons utilize an RNA-intermediate to transpose in a “copy-and-paste” fashion. In addition to the target site duplications (TSDs), a hallmark of transposition shared by both classes, the DNA transposons also carry terminal inverted repeats (TIRs). DNA transposons constitute ~3% of primate genomes and they are thought to be inactive in the recent primate genomes since ~37My ago despite their success during early primate evolution. Retrotransposons can be further divided into Long Terminal Repeat retrotransposons (LTRs), which are characterized by the presence of LTRs at the two ends, and non-LTRs, which lack LTRs. In the primate genomes, LTRs constitute ~9% of genomes and have a low level of ongoing activity, while non-LTR retrotransposons represent the major types of MEs, contributing to ~37% of the genomes with some members being very young and currently active in retrotransposition. The four known types of non-LTR retrotransposons include LINEs, SINEs, SVAs, and processed pseudogenes, all characterized by the presence of a polyA tail and TSDs, which mostly range from 8 to 15 bp in length. All non-LTR retrotransposons are known to utilize the L1-based target-primed reverse transcription (TPRT) machineries for retrotransposition. In this study, we report a new type of non-LTR retrotransposon, which we named as retro-DNAs, to represent DNA transposons by sequence but non-LTR retrotransposons by the transposition mechanism in the recent primate genomes. By using a bioinformatics comparative genomics approach, we identified a total of 1,750 retro-DNAs, which represent 748 unique insertion events in the human genome and nine non-human primate genomes from the ape and monkey groups. These retro-DNAs, mostly as fragments of full-length DNA transposons, carry no TIRs but longer TSDs with ~23.5% also carrying a polyA tail and with their insertion site motifs and TSD length pattern characteristic of non-LTR retrotransposons. These features suggest that these retro-DNAs are DNA transposon sequences likely mobilized by the TPRT mechanism. Further, at least 40% of these retro-DNAs locate to genic regions, presenting significant potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of current transcriptional expression, suggesting that they have the potential to create more retro-DNAs in the current primate genomes. The identification of retro-DNAs, despite small in number, reveals a new mechanism in propagating the DNA transposons sequences in the primate genomes with the absence of canonical DNA transposon activity. It also suggests that the L1 TPRT machinery may have the ability to retrotranspose a wider variety of DNA sequences than what we currently know.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Kristian Alsbjerg Skipper ◽  
Anne Kruse Hollensen ◽  
Michael N. Antoniou ◽  
Jacob Giehm Mikkelsen

Abstract Background DNA transposon-based vectors are effective nonviral tools for gene therapy and genetic engineering of cells. However, promoter DNA methylation and a near-random integration profile, which can result in transgene integration into heterochromatin, renders such vectors vulnerable to transcriptional repression. Therefore, to secure persistent transgene expression it may be necessary to protect transposon-embedded transgenes with anti-transcriptional silencing elements. Results We compare four different protective strategies in CHO-K1 cells. Our findings show robust protection from silencing of transgene cassettes mediated by the ubiquitous chromatin-opening element (UCOE) derived from the HNRPA2B1-CBX3 locus. Using a bioinformatic approach, we define a shorter HNRPA2B1-CBX3 UCOE core fragment and demonstrate that this can robustly maintain transgene expression after extended passaging of CHO-K1 cells carrying DNA transposon vectors equipped with this protective feature. Conclusions Our findings contribute to the understanding of the mechanism of HNRPA2B1-CBX3 UCOE-based transgene protection and support the use of a correctly oriented core fragment of this UCOE for DNA transposon vector-based production of recombinant proteins in CHO-K1 cells.


2019 ◽  
Vol 11 (11) ◽  
pp. 3181-3193
Author(s):  
Stefan Cerbin ◽  
Ching Man Wai ◽  
Robert VanBuren ◽  
Ning Jiang

Abstract Transposable elements represent the largest components of many eukaryotic genomes and different genomes harbor different combinations of elements. Here, we discovered a novel DNA transposon in the genome of the clubmoss Selaginella lepidophylla. Further searching for related sequences to the conserved DDE region uncovered the presence of this superfamily of elements in fish, coral, sea anemone, and other animal species. However, this element appears restricted to Bryophytes and Lycophytes in plants. This transposon, named GingerRoot, is associated with a 6 bp (base pair) target site duplication, and 100–150 bp terminal inverted repeats. Analysis of transposase sequences identified the DDE motif, a catalytic domain, which shows similarity to the integrase of Gypsy-like long terminal repeat retrotransposons, the most abundant component in plant genomes. A total of 77 intact and several hundred truncated copies of GingerRoot elements were identified in S. lepidophylla. Like Gypsy retrotransposons, GingerRoots show a lack of insertion preference near genes, which contrasts to the compact genome size of about 100 Mb. Nevertheless, a considerable portion of GingerRoot elements was found to carry gene fragments, suggesting the capacity of duplicating gene sequences is unlikely attributed to the proximity to genes. Elements carrying gene fragments appear to be less methylated, more diverged, and more distal to genes than those without gene fragments, indicating they are preferentially retained in gene-poor regions. This study has identified a broadly dispersed, novel DNA transposon, and the first plant DNA transposon with an integrase-related transposase, suggesting the possibility of de novo formation of Gypsy-like elements in plants.


2019 ◽  
Vol 132 (12) ◽  
pp. 3347-3355
Author(s):  
Hideki Nishimura ◽  
Eiko Himi ◽  
Chang-Ho Eun ◽  
Hidekazu Takahashi ◽  
Qian Qian ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document