scholarly journals Influence of phosphorus diffusion modes on the formation of defects in an oxide

2021 ◽  
pp. 53-57
Author(s):  
Mariya Vil’dyaeva ◽  
Elina Makarova ◽  
Evgenii Klimanov ◽  
Aleksei Lyalikov ◽  
Vladislav Malygin

Using optical microscopy, SEM, atomic force microscope and profilometer, the shape, size and impurity composition of local defects occurring in the silicon dioxide layer during phosphorus diffusion were determined. The reason for the formation of defects in the passivating oxide during phosphorus diffusion is the local melting of SiO2 in interaction with liquid drops of phosphoric-silicate glass. A decrease in the temperature of the phosphorus deposition process and the concentration of POCL3 in the gas stream leads to a decrease in the density of oxide defects.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Yiingqi Shang ◽  
Hongquan Zhang ◽  
Yan Zhang

Aimed at the problem of the small wet etching depth in sapphire microstructure processing technology, a multilayer composite mask layer is proposed. The thickness of the mask layer is studied, combined with the corrosion rate of different materials on sapphire in the sapphire etching solution, different mask layers are selected for the corrosion test on the sapphire sheet, and then the corrosion experiment is carried out. The results show that at 250 °C, the choice is relatively high when PECVD (Plasma Enhanced Chemical Vapor Deposition) is used to make a double-layer composite film of silicon dioxide and silicon nitride. When the temperature rises to 300 °C, the selection ratio of the silicon dioxide layer grown by PECVD is much greater than that of the silicon nitride layer. Therefore, under high temperature conditions, a certain thickness of silicon dioxide can be used as a mask layer for deep cavity corrosion.


2010 ◽  
Vol 1260 ◽  
Author(s):  
Zhen Lin ◽  
Pavel Brunkov ◽  
Xueying Ma ◽  
Franck Bassani ◽  
Georges Bremond

AbstractIn this paper, individual Ge nano island on top of a silicon dioxide layer of thermally grown on a n+ type doped silicon (001) substrate have been studied. The charging ability of an individual Ge island was evaluated by EFM two-pass lift mode measurement. Such Ge nano island becomes an iso-potential and behaves as a conductive material after being charged. These charges were directly injected and were trapped homogenous in the isolated Ge island. It is also shown that the dominant charge decay mechanism during discharging of nc-Ge is related to the leakage of these trapped charges. Further more, the retention time of these trapped charges was evaluated and the electrostatic force was also studied by using different tip bias during scan. Such a study should be very useful to the Ge-nc in memory applications.


1989 ◽  
Vol 165 ◽  
Author(s):  
J. D. Chapple-Sokol ◽  
E. Tiemey ◽  
J. Batey

AbstractSilicon dioxide films deposited from the PECVD reaction of silane and nitrous oxide in the presence of helium were studied to determine the effects of RF power on the deposition process. Increased RF power density yielded oxides which were structurally and chemically more homogeneous. The combination of elevated power density with increased silane concentration resulted in the deposition of films of high electrical and physical integrity at high deposition rates.


Author(s):  
Surendra Kumar Gupta ◽  
Patricia Iglesias Victoria

Microstructure of annealed plain carbon steels is examined using optical microscopy. When the inter-lamellar spacing in pearlite is small, optical microscope at 1000X is unable to resolve the ferrite and cementite lamellae. In hyper-eutectoid steels, cementite in pearlite appears as darker phase whereas the pro-eutectoid cementite appears as a lighter phase. Atomic force microscopy (AFM) of etched steels is able to resolve ferrite and cementite lamellae in pearlite at similar magnifications. Both cementite in pearlite as well as pro-eutectoid cementite appear as raised areas (hills) in AFM images. Interlamellar spacing in pearlite increases with increasing hardenability of steel.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2008
Author(s):  
Hsiu-Wen Chien ◽  
Hong-Yu Lin ◽  
Chau-Yi Tsai ◽  
Tai-Yu Chen ◽  
Wei-Nian Chen

Superhydrophilic coatings have been widely used for the surface modification of membranes or biomedical devices owing to their excellent antifouling properties. However, simplifying the modification processes of such materials remains challenging. In this study, we developed a simple and rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different oxidants and SBMA concentrations on surface modification in detail using UV–VIS spectrophotometry, dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance. We found that NaIO4 could trigger the rate of polymerization and the optimum ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water contact angle < 10°) and antifouling. The superhydrophilic coating, when introduced to polyester membranes, showed great potential for oil/water separation. Our study provides a complete description of the simple and fast preparation of superhydrophilic coatings for surface modification based on mussel-inspired chemistry.


2018 ◽  
Vol 63 (11) ◽  
pp. 1629-1635 ◽  
Author(s):  
V. M. Mordvintsev ◽  
S. E. Kudryavtsev ◽  
V. L. Levin

Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


Sign in / Sign up

Export Citation Format

Share Document