scholarly journals Low-Cost Hyperspectral Imaging with A Smartphone

2021 ◽  
Vol 7 (8) ◽  
pp. 136
Author(s):  
Mary B. Stuart ◽  
Andrew J. S. McGonigle ◽  
Matthew Davies ◽  
Matthew J. Hobbs ◽  
Nicholas A. Boone ◽  
...  

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone’s abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4267
Author(s):  
Andrija Krtalić ◽  
Vanja Miljković ◽  
Dubravko Gajski ◽  
Ivan Racetin

This article describes the adaptation of an existing aerial hyperspectral imaging system in a low-cost setup for collecting hyperspectral data in laboratory and field environment and spatial distortion assessments. The imaging spectrometer system consists of an ImSpector V9 hyperspectral pushbroom scanner, PixelFly high performance digital CCD camera, and a subsystem for navigation, position determination and orientation of the system in space, a sensor bracket and control system. The main objective of the paper is to present the system, with all its limitations, and a spatial calibration method. The results of spatial calibration and calculation of modulation transfer function (MTF) are reported along with examples of images collected and potential uses in agronomy. The distortion value rises drastically at the edges of the image in the near-infrared segment, while the results of MTF calculation showed that the image sharpness was equal for the bands from the visible part of the spectrum, and approached Nyquist’s theory of digitalization. In the near-infrared part of the spectrum, the MTF values showed a less sharp decrease in comparison with the visible part. Preliminary image acquisition indicates that this hyperspectral system has potential in agronomic applications.


2019 ◽  
Vol 114 (8) ◽  
pp. 1481-1494 ◽  
Author(s):  
Curtis L. Johnson ◽  
David A. Browning ◽  
Neil E. Pendock

Abstract The Phoenix mine and predecessor operations in north-central Nevada have produced an aggregate of 5.2 Moz of gold and 550 million pounds of copper from an Eocene-aged Au-Cu porphyry-related skarn. The complex skarn mineralogy intimately associated with ore-grade mineralization poses significant challenges to blasting, mining, comminution, and process operations. These challenges are rooted in highly variable silicate mineralogy, which manifests as fine-grained, submillimeter grain-size, generally green colored rocks that inhibit accurate identification in the field. Prior to this study, all mineralogical data utilized in Phoenix mine ore control were sourced from blast hole cuttings mapped by ore control geologists in the field—the standard practice at many modern mine sites. At Phoenix, a direct link between mineralogy and mill performance was recognized; however, mineralogical data captured in the field was not sufficient to optimize process operations. To address this, it was determined that analytical work was necessary to quantify fine-grained mineralogy of variable ore types. A visible-near and short-wave infrared (VNIR-SWIR) hyperspectral imaging system provided the ideal tool, as it allows near real-time mineralogical data acquisition and semiquantitative determination of mineral abundances. Multiple iterative studies were conducted to prove that hyperspectral imaging of Phoenix ore types provides results suitable for process optimization. This six-month study described here included hyperspectral imaging of 3,008 blast hole cuttings samples from three pits, and 877 crusher feed, rougher feed, and rougher tails samples. Hyperspectral feature extractions derived from mill samples were paired with associated mill performance data and used to build predictive Au-Cu recovery, grade, and throughput models using multiple linear regression, partial least squares, and deep learning techniques with R-correlation values to observed data of 0.56 to 0.71. Blast hole hyperspectral data were then applied to recovery, grade, and throughput models to calculate predicted recoveries and throughputs that were spatially kriged with excellent correlations to geologic features. The application of VNIR-SWIR hyperspectral imaging to blast hole cuttings is a powerful predictive and diagnostic geometallurgical tool in operations where silicate mineralogy has a strong impact on process operations.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 97 ◽  
Author(s):  
Siddharth Chaudhary ◽  
Sarawut Ninsawat ◽  
Tai Nakamura

The aim of this study was to investigate the potential of the non-destructive hyperspectral imaging system (HSI) and accuracy of the model developed using Support Vector Machine (SVM) for determining trace detection of explosives. Raman spectroscopy has been used in similar studies, but no study has been published which is based on measurement of reflectance from hyperspectral sensor for trace detection of explosives. HSI used in this study has an advantage over existing techniques due to its combination of imaging system and spectroscopy, along with being contactless and non-destructive in nature. Hyperspectral images of the chemical were collected using the BaySpec hyperspectral sensor which operated in the spectral range of 400–1000 nm (144 bands). Image processing was applied on the acquired hyperspectral image to select the region of interest (ROI) and to extract the spectral reflectance of the chemicals which were stored as spectral library. Principal Component Analysis (PCA) and first derivative was applied to reduce the high dimensionality of the image and to determine the optimal wavelengths between 400 and 1000 nm. In total, 22 out of 144 wavelengths were selected by analysing the loadings of principal components (PC). SVM was used to develop the classification model. SVM model established on the whole spectrum from 400 to 1000 nm achieved an accuracy of 81.11%, whereas an accuracy of 77.17% with less computational load was achieved when SVM model was established on the optimal wavelengths selected. The results of the study demonstrate that the hyperspectral imaging system along with SVM is a promising tool for trace detection of explosives.


2020 ◽  
Vol 10 (8) ◽  
pp. 2851
Author(s):  
Quoc Thien Pham ◽  
Nai-Shang Liou

A novel object rotation hyperspectral imaging system with the wavelength range of 468–950 nm for investigating round-shaped fruits was developed. This system was used to obtain the reflection spectra of jujubes for the application of surface defect detection. Compared to the traditional linear scan system, which can scan about 49% of jujube surface in one scan pass, this novel object rotation scan system can scan 95% of jujube surface in one scan pass. Six types of jujube skin condition, including rusty spots, decay, white fungus, black fungus, cracks, and glare, were classified by using hyperspectral data. Support vector machine (SVM) and artificial neural network (ANN) models were used to differentiate the six jujube skin conditions. Classification effectiveness of models was evaluated based on confusion matrices. The percentage of classification accuracy of SVM and ANN models were 97.3% and 97.4%, respectively. The object rotation scan method developed for this study could be used for other round-shaped fruits and integrated into online hyperspectral investigation systems.


2011 ◽  
Vol 204-210 ◽  
pp. 131-134 ◽  
Author(s):  
Wei Zou ◽  
Hui Fang ◽  
Yi Dan Bao ◽  
Yong He

Hyperspectral imaging (400-1000nm) and artificial neural network (ANN) techniques were investigated for the detection of nitrogen content changes of rape leaf. Measuring SPAD value of rape leaf by using SPAD (Soil and Plant Analyzer Development).A hyperspectral imaging system was established to acquire hyperspectral data. Principal component analysis(PCA) was used to obtain principal component images, as well as to select the optimal wavelength(s). ANN was applied to establish the model between the spectral reflection values and SPAD values. The prediction results were obtained for the nitrogen content of rape leaf with the correlation of prediction of R=0.9237. The results show that the hyperspectral imaging has good classification on different nitrogen content of rape leaf.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3293
Author(s):  
Mary B. Stuart ◽  
Leigh R. Stanger ◽  
Matthew J. Hobbs ◽  
Tom D. Pering ◽  
Daniel Thio ◽  
...  

The recent surge in the development of low-cost, miniaturised technologies provides a significant opportunity to develop miniaturised hyperspectral imagers at a fraction of the cost of currently available commercial set-ups. This article introduces a low-cost laboratory-based hyperspectral imager developed using commercially available components. The imager is capable of quantitative and qualitative hyperspectral measurements, and it was tested in a variety of laboratory-based environmental applications where it demonstrated its ability to collect data that correlates well with existing datasets. In its current format, the imager is an accurate laboratory measurement tool, with significant potential for ongoing future developments. It represents an initial development in accessible hyperspectral technologies, providing a robust basis for future improvements.


Author(s):  
V. Miljković ◽  
D. Gajski

The spectral characteristic of the visible light reflected from any of archaeological artefact is the result of the interaction of its surface illuminated by incident light. Every particular surface depends on what material it is made of and/or which layers put on it has its spectral signature. Recent archaeometry recognises this information as very valuable data to extend present documentation of artefacts and as a new source for scientific exploration. However, the problem is having an appropriate hyperspectral imaging system available and adopted for applications in archaeology. In this paper, we present the new construction of the hyperspectral imaging system, made of industrial hyperspectral line scanner ImSpector V9 and CCD-sensor PixelView. The hyperspectral line scanner is calibrated geometrically, and hyperspectral data are geocoded and converted to the hyperspectral cube. The system abilities are evaluated for various archaeological artefacts made of different materials. Our experience in applications, visualisations, and interpretations of collected hyperspectral data are explored and presented.


Author(s):  
V. Miljković ◽  
D. Gajski

The spectral characteristic of the visible light reflected from any of archaeological artefact is the result of the interaction of its surface illuminated by incident light. Every particular surface depends on what material it is made of and/or which layers put on it has its spectral signature. Recent archaeometry recognises this information as very valuable data to extend present documentation of artefacts and as a new source for scientific exploration. However, the problem is having an appropriate hyperspectral imaging system available and adopted for applications in archaeology. In this paper, we present the new construction of the hyperspectral imaging system, made of industrial hyperspectral line scanner ImSpector V9 and CCD-sensor PixelView. The hyperspectral line scanner is calibrated geometrically, and hyperspectral data are geocoded and converted to the hyperspectral cube. The system abilities are evaluated for various archaeological artefacts made of different materials. Our experience in applications, visualisations, and interpretations of collected hyperspectral data are explored and presented.


Author(s):  
Wen Mo ◽  
Tian Wang ◽  
Shaobo Zhang ◽  
Jinhuan Zhang

Abstract Billions of Internet of Thing (IoT) devices are deployed in edge network. They are used to monitor specific event, process and to collect huge data to control center with smart decision based on the collected data. However, some malicious IoT devices may interrupt and interfere with normal nodes in data collection, causing damage to edge network. Due to the open character of the edge network, how to identify the credibility of these nodes, thereby identifying malicious IoT devices, and ensure reliable data collection in the edge network is a great challenge. In this paper, an Active and Verifiable Trust Evaluation (AVTE) approach is proposed to identify the credibility of IoT devices, so to ensure reliable data collection for Edge Computing with low cost. The main innovations of the AVTE approach compared with the existing work are as follows: (1) In AVTE approach, the trust of the device is obtained by an actively initiated trusted detection routing method. It is fast, accurate and targeted. (2) The acquisition of trust in the AVTE approach is based on a verifiable method and it ensures that the trust degree has higher reliability. (3) The trust acquisition method proposed in this paper is low-cost. An encoding returned verification method is applied to obtain verification messages at a very low cost. This paper proposes an encoding returned verification method, which can obtain verification messages at a very low cost. In addition, the strategy of this paper adopts initiation and verification of adaptive active trust detection according to the different energy consumption of IoT devices, so as to reliably obtain the trust of device under the premise of ensuring network lifetime. Theoretical analysis shows that AVTE approach can improve the data collection rate by 0.5 ~ 23.16% while ensuring long network lifetime compared with the existing scheme.


Sign in / Sign up

Export Citation Format

Share Document