coal temperature
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5526
Author(s):  
Chaolin Zhang ◽  
Enyuan Wang ◽  
Jiang Xu ◽  
Shoujian Peng

Coal and gas outbursts are among the most severe disasters threatening the safety of coal mines around the world. They are dynamic phenomena characterized by large quantities of coal and gas ejected from working faces within a short time. Numerous researchers have conducted studies on outburst prediction, and a variety of indices have been developed to this end. However, these indices are usually empirical or based on local experience, and the accurate prediction of outbursts is not feasible due to the complicated mechanisms of outbursts. This study conducts outburst experiments using large-scale multifunctional equipment developed in the laboratory to develop a more robust outburst prediction method. In this study, the coal temperature during the outburst process was monitored using temperature sensors. The results show that the coal temperature decreased rapidly as the outburst progressed. Meanwhile, the coal temperature in locations far from the outburst mouth increased. The coal broken in the stress concentration state is the main factor causing the abnormal temperature rise. The discovery of these phenomena lays a theoretical foundation and provides an experimental basis for an effective outburst prediction method. An outburst prediction method based on monitoring temperature was proposed, and has a simpler and faster operation process and is not easily disturbed by coal mining activities. What is more, the critical values of coal temperature rises or temperature gradients can be flexibly adjusted according to the actual situations of different coal mines to predict outbursts more effectively and accurately.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Chaolin Zhang ◽  
Jiang Xu ◽  
Enyuan Wang ◽  
Shoujian Peng

Coal seam gas is a critical substance because it can be a source of a large quantity of clean energy as well as a dangerous source of risk. A pressure relief gas drainage is an effective and widely used method for coal seam gas recovery and gas disaster control in coal mines. A series of pressure relief gas drainage experiments were conducted using large-scale coal samples under different unloading stress paths in this study to explore the unloading stress paths. From the experimental results, the dynamic evolutions of gas pressure, coal temperature, and gas production were analyzed. The trends of gas pressure and coal temperature during pressure relief gas drainage were similar: dropping rapidly first and then slowly with time. Correspondingly, gas production was fast in the early stage of pressure relief gas drainage and became stable thereafter. Meanwhile, gas flow characteristics were significantly affected by the unloading stress paths. Gas pressure and coal temperature had the maximum descent by unloading stress in three directions simultaneously, and the unloading stress of the Z direction had the minimal impact when only unloading in one direction of stress. However, the influence of unloading stress paths on gas production was complex and time dependent. The difference coefficient parameter was proposed to characterize the influence degree of unloading stress paths on the pressure relief gas drainage effect. Eventually, the selection of unloading stress path under different situations was discussed based on time, which is expected to provide the basis for pressure relief gas drainage.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
T. Yang ◽  
B. S. Nie ◽  
Q. S. Ye ◽  
P. Chen

To further reveal the mechanism of coal gas migration, the reasons for coal temperature changes during the methane desorption process were analyzed from the aspect of molecular motion and the thermodynamic theory. The temperature change mechanism was investigated, and the mathematical equation was established to describe the variation of temperature change during the methane desorption and diffusion process. The established equation was applied for the calculation of temperature change for two types of coal samples, and the measured and theoretical values of temperature changes were obtained. The results show that the temperature changes in the coal gas desorption process are mainly caused by the heat adsorption. The heat adsorption phenomenon was also caused by free gas expansion during the pressure relief process. The gas diffusion and work done for gas seepage also need heat adsorption. The temperature change is positively correlated to the coal gas pressure, quantity, and limit value of gas desorption volume. Due to the poor insulation in the test system, the difference between the theoretical and the measured temperature change values increase with the adsorption equilibrium pressure. It is helpful to further reveal the mechanism of coal and gas outburst. It also has an important reference value for controlling gas dynamic disasters in coal mines.


2015 ◽  
Vol 58 (2) ◽  
pp. 43-48 ◽  
Author(s):  
D. V. Miroshnichenko ◽  
N. A. Desna ◽  
Yu. S. Kaftan
Keyword(s):  

2013 ◽  
Vol 19 (2) ◽  
pp. 133-135
Author(s):  
Yi-Shan Pan ◽  
Lian-Man Xu ◽  
Zhong-Hua Li ◽  
Guo-Zhen Li

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Zhigang Li ◽  
Xiaoming Zhang ◽  
Yuichi Sugai ◽  
Jiren Wang ◽  
Kyuro Sasaki

Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1by a CO2gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.


Author(s):  
CS Lyman ◽  
TA Perfetti ◽  
DM Riggs ◽  
WT Morgan

AbstractCoal temperatures affect the burn properties of cigarettes. Thermal imaging was used to determine the average maximum surface coal temperatures during smolder of cigarettes of different tobacco types. The thermal imaging camera was calibrated against a reference blackbody. An emissivity correction was necessary since the set point temperatures of the reference blackbody did not correspond to the measured temperatures of the reference blackbody. A 0.87 camera emissivity was applied to provide accurate coal temperatures at a corrected emissivity of approximately 1. The average maximum surface coal temperatures during smolder of unfiltered single-tobacco-type cigarettes and a commercial blend cigarette were determined (with the camera lens focused parallel to the cigarette), and no discernible differences among them were found. The calculated average maximum surface coal temperature during smolder for all cigarettes was 584 AA± 15 °C. During smolder, thermocouples were used to measure the temperature of the gas phase (along the central axis of coal), and the thermal imaging camera was used to measure the temperature of the solid phase of the coal's surface. Using thermocouples, the peak coal temperatures in the center of the coal during smolder for three filtered single-tobacco-type cigarettes were 736-744 °C. Peak coal temperatures, measured by thermal imaging, on the surface of the coal (with the camera lens focused coaxially with the coal and the ash removed) for the same three single-tobacco-type cigarettes had a range of 721-748 °C. There was good correspondence between the two techniques. These results confirm that during smolder the gas-phase temperature inside the coal (as measured with the thermocouple) and the solid-phase temperatures beneath the ash (as measured with the camera) are in near thermal equilibrium. With proper calibration, a thermal imaging system is a good alternative to thermocouples for measuring cigarette coal temperatures.


Sign in / Sign up

Export Citation Format

Share Document