scholarly journals Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review

Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Prasad Chavan ◽  
Pallavi Sharma ◽  
Sajeev Rattan Sharma ◽  
Tarsem Chand Mittal ◽  
Amit K. Jaiswal

The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology’s benefits and downsides. The breadth of ultrasound’s application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1538
Author(s):  
Gloria López-Gámez ◽  
Pedro Elez-Martínez ◽  
Olga Martín-Belloso ◽  
Robert Soliva-Fortuny

Fruits and vegetables are rich sources of bioactive compounds and micronutrients. Some of the most abundant are phenols and carotenoids, whose consumption contributes to preventing the occurrence of degenerative diseases. Recent research has shown the potential of non-thermal processing technologies, especially pulsed electric fields (PEF), ultrasounds (US), and high pressure processing (HPP), to trigger the accumulation of bioactive compounds through the induction of a plant stress response. Furthermore, these technologies together with high pressure homogenization (HPH) also cause microstructural changes in both vegetable tissues and plant-based beverages. These modifications could enhance carotenoids, phenolic compounds, vitamins and minerals extractability, and/or bioaccessibility, which is essential to exert their positive effects on health. Nevertheless, information explaining bioaccessibility changes after non-thermal technologies is limited. Therefore, further research on food processing strategies using non-thermal technologies offers prospects to develop plant-based products with enhanced bioaccessibility of their bioactive compounds and micronutrients. In this review, we attempt to provide updated information regarding the main effects of PEF, HPP, HPH, and US on health-related compounds bioaccessibility from different vegetable matrices and the causes underlying these changes. Additionally, we propose future research on the relationship between the bioaccessibility of bioactive compounds and micronutrients, matrix structure, and non-thermal processing.


2011 ◽  
Vol 124 (4) ◽  
pp. 1387-1392 ◽  
Author(s):  
Irene M. Caminiti ◽  
Francesco Noci ◽  
Arantxa Muñoz ◽  
Paul Whyte ◽  
Desmond J. Morgan ◽  
...  

2019 ◽  
Vol 954 ◽  
pp. 35-45
Author(s):  
Chun Jun Liu ◽  
T.H. Peng ◽  
B. Wang ◽  
Y. Guo ◽  
Y.F. Lou ◽  
...  

The research and commercialization of SiC based power device have been burgeoning over the last decade worldwide, which is bringing about an increasing demand on lost-cost and low-defect SiC wafers. To meet this challenge, we have been continuously making efforts on improving the crystal growth and wafer processing techniques. Now, the mass-production of high quality 4-inch, 6-inch n-type and semi-insulating SiC wafers has been realized. Statistically, the micropipe density is lower than 0.5 cm-2. The resistivity of the wafers is lower than 0.02 Ω·cm and up to 108 Ω·cm for n-type and semi-insulating SiC single crystals, respectively. A state of the art processing technique has been developed to control wafer deformation and thickness within the desired values for subsequent epitaxy. The total defect number of the epitaxial layers grown on the "epi-ready" 4-inch SiC wafer is 63, and the usable area is 97.6%, indicating the high quality of our SiC substrates.


2021 ◽  
Vol 5 ◽  
Author(s):  
Sonia Goel ◽  
Mohinder Singh ◽  
Sapna Grewal ◽  
Ali Razzaq ◽  
Shabir Hussain Wani

Triticum aestivum, commonly known as bread wheat, is one of the most cultivated crops globally. Due to its increasing demand, wheat is the source of many nutritious products including bread, pasta, and noodles containing different types of seed storage proteins. Wheat seed storage proteins largely control the type and quality of any wheat product. Among various unique wheat products, bread is the most consumed product around the world due to its fast availability as compared to other traditional food commodities. The production of highly nutritious and superior quality bread is always a matter of concern because of its increasing industrial demand. Therefore, new and more advanced technologies are currently being applied to improve and enrich the bread, having increased fortified nutrients, gluten-free, highly stable with enhanced shelf-life, and long-lasting. This review focused on bread proteins with improving wheat qualities and nutritional properties using modern technologies. We also describe the recent innovations in processing technologies to improve various quality traits of wheat bread. We also highlight some modern forms of bread that are utilized in different industries for various purposes and future directions.


2018 ◽  
Vol 24 (5) ◽  
pp. 434-446 ◽  
Author(s):  
Anet Režek Jambrak ◽  
Marina Šimunek ◽  
Ilija Djekic

The influence of ultrasound in combination with elevated temperature (thermosonication) is important in inactivation effects on microorganisms. However, overall quality of these products can be deteriorated. The aim of this study was to examine the use of a single quality index in evaluating effects of ultrasound technology on quality characteristics of blueberry and cranberry juices and nectars. For the purpose of this study based on 10 quality parameters, two mathematical models for calculating a single total quality index have been introduced. Samples were treated according to the experimental design, with high power ultrasound frequency of 20 kHz under various conditions (treatment time: 3, 6 and 9 min, sample temperature: 20 ℃, for thermosonication: 40 and 60 ℃ and amplitude: 60, 90 and 120 µm). Mathematical index of total quality index in order to evaluate total quality of ultrasound-treated juices and nectars was established. For cranberry juices, treatments ‘11’ (amplitude 120 µm) and ‘16’ (amplitude 60 µm) both for 9 min and the temperature of 20 ℃ were best scored for both models. Treatment ‘6’ (amplitude 120 µm, 3 min treatment time and the sample temperature of 20 ℃) for cranberry nectars was among the best for both models. Ultrasound treatments ‘6’ of amplitude 120 µm, 3 min and the temperature of 20 ℃ and ‘11’ same amplitude 120 µm and temperature, but 9 min were best scored blueberry juices for both models. Blueberry nectar had best total quality index for treatments ‘5’ (amplitude 120 µm, 6 min treatment time and the sample temperature of 40 ℃) and ‘6’ (amplitude 120 µm, 3 min treatment time and the sample temperature of 20 ℃).


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 288 ◽  
Author(s):  
Paulo E. S. Munekata ◽  
Rubén Domínguez ◽  
Sravanthi Budaraju ◽  
Elena Roselló-Soto ◽  
Francisco J. Barba ◽  
...  

Increase in allergenicity towards cow’s milk, lactose intolerance, the prevalence of hypercholesterolemia, and flexitarian choice of food consumption have increased the market for cow’s milk alternatives. Non-dairy plant-based beverages are useful alternatives because of the presence of bioactive components with health-promoting properties, which attract health-conscious consumers. However, the reduced nutritional value and sensory acceptability of the plant-based beverages (such as flavor, taste, and solubility) compared to cow’s milk pose a big threat to its place in the market. Thermal treatments are commonly used to ensure the quality of plant-based beverages during storage. However, the application of high temperatures can promote the degradation of thermolabile compounds and some detrimental reactions, thus reducing protein digestibility and amino acid availability of non-dairy plant-based beverages substitutes. New and advanced food processing technologies, such as high-pressure processing, high-pressure homogenization, pulsed electric fields, and ultrasound, are being researched for addressing the issues related to shelf life increase, emulsion stability, preservation of nutritional content and sensorial acceptability of the final product. However, the literature available on the application of non-thermal processing technologies on the physicochemical and nutritional properties of plant-based beverages is scarce. Concerted research efforts are required in the coming years in the functional plant-based beverages sector to prepare newer, tailor-made products which are palatable as well as nutritionally adequate.


Author(s):  
Uppuluri Sirisha ◽  
G. Lakshme Eswari

This paper briefly introduces Internet of Things(IOT) as a intellectual connectivity among the physical objects or devices which are gaining massive increase in the fields like efficiency, quality of life and business growth. IOT is a global network which is interconnecting around 46 million smart meters in U.S. alone with 1.1 billion data points per day[1]. The total installation base of IOT connecting devices would increase to 75.44 billion globally by 2025 with a increase in growth in business, productivity, government efficiency, lifestyle, etc., This paper familiarizes the serious concern such as effective security and privacy to ensure exact and accurate confidentiality, integrity, authentication access control among the devices.


Sign in / Sign up

Export Citation Format

Share Document