scholarly journals Improvement in Bending Strength of Silicon Nitride through Laser Peening

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 315
Author(s):  
Kazuya Saigusa ◽  
Joji Yamamoto ◽  
Koji Takahashi ◽  
Fumiaki Kumeno ◽  
Norihito Shibuya

This study aimed to improve the bending strength and reliability of ceramics using laser peening (LP). In the experiment, LP without coating (LPwC) and with coating (LPC) were applied to silicon nitride (Si3N4) under various conditions. The surface roughness, residual stress, and bending strength were then measured for the non-LP, LPwC, and LPC specimens. The results show that the LPwC specimen had a greater surface roughness but introduced larger and deeper compressive residual stress when compared with the non-LP and LPC specimens. In addition, the bending strength of the LPwC specimen was higher and scatter in bending strength was less compared with the non-LP and LPC specimens. This may be attributed to the transition of the fracture initiation point from the surface to the interior of the LPwC specimen because of the compressive residual stress introduced near the surface. Thus, it was demonstrated that the application of LP is effective in improving the strength and reliability of ceramics.

2013 ◽  
Vol 631-632 ◽  
pp. 660-665 ◽  
Author(s):  
Yao Wang ◽  
Zha Yan Feng

In order to enhance the efficiency and the surface smooth degree of the RBSiC grinding, a three factors two levels full factorial design was utilized to optimize the process. Combined with the effects of grinding parameters on surface roughness, the grit cut depth analysis was employed to choose the appropriate grinding parameters. The strength reliability and the residual stresses of the RBSiC ground using the optimized parameters were investigated. The results show that comparing to the polished RBSiC the ground ones have higher compressive residual stress, lower crack scatter and similar average bending strength.


Author(s):  
S Anand Kumar ◽  
R Sundar ◽  
S Ganesh Sundara Raman ◽  
R Gnanamoorthy ◽  
R Kaul ◽  
...  

This paper deals with the effects of laser peening on fretting wear behaviour of a nickel-based superalloy, alloy 718, fretted against two different counterbody materials (alumina and SAE 52100 steel). Laser peening was carried out on alloy 718. Microstructural characterization of laser peened surface was done by electron back-scattered diffraction and transmission electron microscopy. Surface roughness, nanoindentation hardness, and residual stress of both laser peened and unpeened samples were determined. Fretting wear tests were conducted on unpeened and laser peened samples using two different counterbody materials (alumina and SAE 52100 steel balls). The results show that nanocrystallites formed in the surface and near-surface regions and compressive residual stress were induced after laser peening. Hardness increased due to grain refinement at the surface and near-surface regions. There was no significant change in the surface roughness. The laser peened sample exhibited lower tangential force coefficient values compared to unpeened samples at all loads, which may be attributed to higher hardness. Samples fretted against alumina counterbody exhibited higher tangential force coefficient compared to samples fretted against steel counterbody. Owing to increased surface hardness and higher compressive residual stress, laser peened samples exhibited lower fretting wear damage compared to unpeened samples. Due to tribochemical reactions, the wear volume of unpeened and laser peened samples fretted against alumina counterbody was higher than that of the samples fretted against steel counterbody.


2019 ◽  
Vol 825 ◽  
pp. 92-98
Author(s):  
Nakatsuka Nagatoshi ◽  
Sumito Toyokawa ◽  
Atsushi Kusakabe ◽  
Shinya Nakatsukasa ◽  
Hiroyuki Sasahara

The objective of this paper is to clarify the effect of grinding surface characteristics in the grinding of a titanium alloy with a coolant supply from the inner side of the grinding wheel. In this paper, we selected a white aluminum oxide (WA) vitrified bonded grinding wheel and a green silicon carbide (GC) vitrified bonded grinding wheel, and compared their grinding characteristics. As a result, in the case of the GC vitrified bonded grinding wheel, the surface roughness decreased by about 54% and the compressive residual stress increased by about 128%.


2006 ◽  
Vol 326-328 ◽  
pp. 1093-1096 ◽  
Author(s):  
Won Jo Park ◽  
Sun Chul Huh ◽  
Sung Ho Park

Small steel ball is utilized in Shot peening process. Called “shot ball” are shot in high speed on the surface of metal. When the shot ball hit the surface, it makes plastic deformation and bounce off, that increase the fatigue life by compressive residual stress on surface. In this study, the results of observation on the tensile strength, hardness, surface roughness, compressive residual stress and fatigue life of a shot peened Al6061-T651 were obtained. Experimental results show that arc height increase tremendously by shot velocity. Also, it shows that surface roughness, hardness, compressive residual stress and fatigue life increase as shot velocity increase.


1998 ◽  
Vol 554 ◽  
Author(s):  
Tao Zhang ◽  
Akihisa Inoue

AbstractA bulk amorphous Zr55Al10Ni5Cu30 alloy prepared by squeeze casting was found to exhibit high mechanical strength values, i.e., uniaxial tensile fracture strength (σt) of 1850 MPa, three-point bending strength (σb) of 3200 MPa, bending fatigue strength (σf) of 1100 MPa, Charpy impact fracture energy (Ef) of 135 kJ/m2 and fracture toughness of 68 MPa√m. The σb, σf and Ef are about two times higher than those for the corresponding bulk amorphous alloys prepared by unidirectional solidification and powder consolidation techniques, though the σt of the squeeze cast sample is higher by about 15 % than those for the other samples. The remarkable increases in the σb, σf and EF are presumably due to the introduction of high compressive residual stress of about 1240 MPa in the outer surface region only for the squeeze cast sample. The finding of the effectiveness of the compressive residual stress on the increase in the mechanical strength under the bending stress mode is important and expected to be widely used as a new strengthening mechanism for bulk amorphous alloys, as is the case for reinforced oxide glasses subjected to strengthening treatment.


2006 ◽  
Vol 2006.14 (0) ◽  
pp. 167-168
Author(s):  
Yuji SANO ◽  
Koichi AKITA ◽  
Kiyotaka MASAKI ◽  
Yasuo OCHI

2020 ◽  
Vol 70 (4) ◽  
pp. 454-460
Author(s):  
K. Krishnakumar ◽  
A. Arockia Selvakumar

This research paper describes a technique for the enhancement of the fatigue strength of the chain link plate in the drive system of a military armoured vehicle. SAE 1541 steel link plates of chains were subjected to cyclical tensile stress due to repeated loading and un-loading conditions. The crack was getting originated from the pitch hole and growth perpendicular to the chain pulling load, due to fatigue mechanism. In general plate holes are manufactured using the conventional process. An additional novel technique called the slip ball burnishing (SBB) method is applied for improving the hole properties. The improvement is made by producing local plastic deformation, improving surface finish and compressive residual stress throughout in the pierced hole. Both the conventional process (CP) and the SBB technique have been evaluated by optical, profile, surface roughness and micro harness tests. Experimental fatigue test validations were done in both chain samples using the Johnson-Goodman method. SBB chains passed 3x106 cycles at the load of 17.61 kN and CP chains passed 3x106 cycles at the load of 13.92 kN. The conclusion was that SBB made a significant improvement of 26.51 per cent of fatigue strength compared to CP.


2004 ◽  
Vol 449-452 ◽  
pp. 881-884 ◽  
Author(s):  
Do Won Seo ◽  
Ho Chel Yoon ◽  
Jin Yi Lee ◽  
Jae Kyoo Lim

Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion and good corrosion properties. To combine the specific advantages of ceramics with that of metals, they are often used together within one composite component. In this study, the effect of temperature on fracture characteristics of silicon nitride joined to 304 stainless steel brazed with Ti active alloy are investigated in room and high temperature regions. And analytical studies on the residual stress of dissimilar brazed joint are performed by the finite element method. Four-point bending strength and deflection of interlayer increase with increasing strain rate in room temperature. As the test temperature increases, the bending strength decreases, but the deflection of interlayer is almost constant. The residual stresses redistribute after cutting of joint and the maximum tensile stress occurs on the new free surface at the ceramic near the interface. The singularity of residual stresses at the ceramic near the interface is characterized by elastic-plastic properties of ceramic and inserted materials.­


2006 ◽  
Vol 524-525 ◽  
pp. 135-140 ◽  
Author(s):  
Koichi Akita ◽  
Masatoshi Kuroda ◽  
Philip J. Withers

Residual stress induced by laser single pulse irradiation was analyzed using a dynamic finite element code, ABAQUS/Explicit. The effects of the magnitude and length of a surface pressure pulse having a circular top-hat shape on the final residual stress in Ti-6Al-4V were investigated. A high peak pressure and/or a long pulse duration was effective in generating large compressive residual stress deep beneath the surface. However, large tensile residual stress features occurred near the centre and edge of the laser spot on the surface for high pressure and/or long pulse durations due to a radial focusing effect. Use of shorter pulse durations avoided this. The peak pressure (3GPa) required to induce a surface compressive residual stress across the whole area of the spot was slightly higher than the threshold pressure needed to plastically deform the surface.


Sign in / Sign up

Export Citation Format

Share Document