Influence of Thermoregulatory Vasomotion and Ambient Temperature Variation on the Accuracy of Core-temperature Estimates by Cutaneous Liquid-crystal Thermometers

1997 ◽  
Vol 86 (3) ◽  
pp. 603-612 ◽  
Author(s):  
Takehiko Ikeda ◽  
Daniel I. Sessler ◽  
Danielle Marder ◽  
Junyu Xiong

Background Recently, liquid crystal skin-surface thermometers have become popular for intraoperative temperature monitoring. Three situations during which cutaneous liquid-crystal thermometry may poorly estimate core temperature were monitored: (1) anesthetic induction with consequent core-to-peripheral redistribution of body heat, (2) thermoregulatory vasomotion associated with sweating (precapillary dilation) and shivering (minimal capillary flow), and (3) ambient temperature variation over the clinical range from 18-26 degrees C. Methods The core-to-forehead and core-to-neck temperature difference was measured using liquid-crystal thermometers having an approximately 2 degrees C offset. Differences exceeding 0.5 degree C (a 1 degree C) temperature range) were a priori deemed potentially clinically important. Seven volunteers participated in each protocol. First, core-to-peripheral redistribution of body heat was produced by inducing propofol/desflurane anesthesia; anesthesia was then maintained for 1 h with desflurane. Second, vasodilation was produced by warming unanesthetized volunteers sufficiently to produce sweating; intense vasoconstriction was similarly produced by cooling the volunteers sufficiently to produce shivering. Third, a canopy was positioned to enclose the head, neck, and upper chest of unanesthetized volunteers. Air within the canopy was randomly set to 18, 20, 22, 24, and 26 degrees C. Results Redistribution of body heat accompanying induction of anesthesia had little effect on the core-to-forehead skin temperature difference. However, the core-to-neck skin temperature gradient decreased approximately 0.6 degree C in the hour after induction of anesthesia. Vasomotion associated with shivering and mild sweating altered the core-to-skin temperature difference only a few tenths of a degree centigrade. The absolute value of the core-to-forehead temperature difference exceeded 0.5 degree C during approximately 35% of the measurements, but the difference rarely exceeded 1 degree C. The core-to-neck temperature difference typically exceeded 0.5 degree C and frequently exceeded 1 degree C. Each 1 degree C increase in ambient temperature decreased the core-to-fore-head and core-to-neck skin temperature differences by less than 0.2 degree C. Conclusions Forehead skin temperatures were better than neck skin temperature at estimating core temperature. Core-to-neck temperature differences frequently exceeded 1 degree C (a 2 degrees C range), whereas two thirds of the core-to-forehead differences were within 0.5 degree C. The core-to-skin temperature differences were, however, only slightly altered by inducing anesthesia, vasomotor action, and typical intraoperative changes in ambient temperature.

2008 ◽  
Vol 109 (2) ◽  
pp. 318-338 ◽  
Author(s):  
Daniel I. Sessler ◽  
David S. Warner ◽  
Mark A. Warner

Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature-measuring sites are completely noninvasive and easy to use-especially in patients not undergoing general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients undergoing general anesthesia exceeding 30 min in duration and in patients undergoing major operations during neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature, triggering cold defenses, including arteriovenous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, with the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extent than does general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown.


2000 ◽  
Vol 92 (2) ◽  
pp. 447-447 ◽  
Author(s):  
Angela Rajek ◽  
Rainer Lenhardt ◽  
Daniel I. Sessler ◽  
Gabriele Brunner ◽  
Markus Haisjackl ◽  
...  

Background Afterdrop, defined as the precipitous reduction in core temperature after cardiopulmonary bypass, results from redistribution of body heat to inadequately warmed peripheral tissues. The authors tested two methods of ameliorating afterdrop: (1) forced-air warming of peripheral tissues and (2) nitroprusside-induced vasodilation. Methods Patients were cooled during cardiopulmonary bypass to approximately 32 degrees C and subsequently rewarmed to a nasopharyngeal temperature near 37 degrees C and a rectal temperature near 36 degrees C. Patients in the forced-air protocol (n = 20) were assigned randomly to forced-air warming or passive insulation on the legs. Active heating started with rewarming while undergoing bypass and was continued for the remainder of surgery. Patients in the nitroprusside protocol (n = 30) were assigned randomly to either a control group or sodium nitroprusside administration. Pump flow during rewarming was maintained at 2.5 l x m(-2) x min(-1) in the control patients and at 3.0 l x m(-2) x min(-1) in those assigned to sodium nitroprusside. Sodium nitroprusside was titrated to maintain a mean arterial pressure near 60 mm Hg. In all cases, a nasopharyngeal probe evaluated core (trunk and head) temperature and heat content. Peripheral compartment (arm and leg) temperature and heat content were estimated using fourth-order regressions and integration over volume from 18 intramuscular needle thermocouples, nine skin temperatures, and "deep" hand and foot temperature. Results In patients warmed with forced air, peripheral tissue temperature was higher at the end of warming and remained higher until the end of surgery. The core temperature afterdrop was reduced from 1.2+/-0.2 degrees C to 0.5+/-0.2 degrees C by forced-air warming. The duration of afterdrop also was reduced, from 50+/-11 to 27+/-14 min. In the nitroprusside group, a rectal temperature of 36 degrees C was reached after 30+/-7 min of rewarming. This was only slightly faster than the 40+/-13 min necessary in the control group. The afterdrop was 0.8+/-0.3 degrees C with nitroprusside and lasted 34+/-10 min which was similar to the 1.1+/-0.3 degrees C afterdrop that lasted 44+/-13 min in the control group. Conclusions Cutaneous warming reduced the core temperature afterdrop by 60%. However, heat-balance data indicate that this reduction resulted primarily because forced-air heating prevented the typical decrease in body heat content after discontinuation of bypass, rather than by reducing redistribution. Nitroprusside administration slightly increased peripheral tissue temperature and heat content at the end of rewarming. However, the core-to-peripheral temperature gradient was low in both groups. Consequently, there was little redistribution in either case.


1997 ◽  
Vol 83 (5) ◽  
pp. 1635-1640 ◽  
Author(s):  
M. S. L. Goheen ◽  
M. B. Ducharme ◽  
G. P. Kenny ◽  
C. E. Johnston ◽  
John Frim ◽  
...  

Goheen, M. S. L., M. B. Ducharme, G. P. Kenny, C. E. Johnston, John Frim, Gerald K. Bristow, and Gordon G. Giesbrecht.Efficacy of forced-air and inhalation rewarming by using a human model for severe hypothermia. J. Appl. Physiol. 83(5): 1635–1640, 1997.—We recently developed a nonshivering human model for severe hypothermia by using meperidine to inhibit shivering in mildly hypothermic subjects. This thermal model was used to evaluate warming techniques. On three occasions, eight subjects were immersed for ∼25 min in 9°C water. Meperidine (1.5 mg/kg) was injected before the subjects exited the water. Subjects were then removed, insulated, and rewarmed in an ambient temperature of −20°C with either 1) spontaneous rewarming (control), 2) inhalation rewarming with saturated air at ∼43°C, or 3) forced-air warming. Additional meperidine (to a maximum cumulative dose of 2.5 mg/kg) was given to maintain shivering inhibition. The core temperature afterdrop was 30–40% less during forced-air warming (0.9°C) than during control (1.4°C) and inhalation rewarming (1.2°C) ( P< 0.05). Rewarming rate was 6- to 10-fold greater during forced-air warming (2.40°C/h) than during control (0.41°C/h) and inhalation rewarming (0.23°C/h) ( P< 0.05). In nonshivering hypothermic subjects, forced-air warming provided a rewarming advantage, but inhalation rewarming did not.


1995 ◽  
Vol 82 (5) ◽  
pp. 1160-1168 ◽  
Author(s):  
Christi Cheng ◽  
Takashi Matsukawa ◽  
Daniel I. Sessler ◽  
Ozaki Makoto ◽  
Andrea Kurz ◽  
...  

Background The contribution of mean skin temperature to the thresholds for sweating and active precapillary vasodilation has been evaluated in numerous human studies. In contrast, the contribution of skin temperature to the control of cold responses such as arteriovenous shunt vasoconstriction and shivering is less well established. Accordingly, the authors tested the hypothesis that mean skin and core temperatures are linearly related at the vasoconstriction and shivering thresholds in men. Because the relation between skin and core temperatures might vary by gender, the cutaneous contribution to thermoregulatory control also was determined in women. Methods In the first portion of the study, six men participated on 5 randomly ordered days, during which mean skin temperatures were maintained near 31, 34, 35, 36, and 37 degrees C. Core hypothermia was induced by central venous infusion of cold lactated Ringer's solution sufficient to induce peripheral vasoconstriction and shivering. The core-temperature thresholds were then plotted against skin temperature and a linear regression fit to the values. The relative skin and core contributions to the control of each response were calculated from the slopes of the regression equations. In the second portion of the study, six women participated on three randomly ordered days, during which mean skin temperatures were maintained near 31, 35, and 37 degrees C. At each designated skin temperature, core hypothermia sufficient to induce peripheral vasoconstriction and/or shivering was again induced by central venous infusion of cold lactated Ringer's solution. The cutaneous contributions to control of each response were then calculated from the skin- and core-temperature pairs at the vasoconstriction and shivering thresholds. Results There was a linear relation between mean skin and core temperatures at the response thresholds in the men: r = 0.90 +/- 0.06 for vasoconstriction and r = 0.94 +/- 0.07 for shivering. Skin temperature contributed 20 +/- 6% to vasoconstriction and 19 +/- 8% to shivering. Skin temperature in the women contributed to 18 +/- 4% to vasoconstriction and 18 +/- 7% to shivering, values not differing significantly from those in men. There was no apparent correlation between the cutaneous contributions to vasoconstriction and shivering in individual volunteers. Conclusions These data indicate that skin and core temperatures contribute linearly to the control of vasoconstriction and shivering in men and that the cutaneous contributions average approximately 20% in both men and women. The same coefficients thus can be used to compensate for experimental skin temperature manipulations in men and women. However, the cutaneous contributions to each response vary among volunteers; furthermore, the contributions to the two responses vary within volunteers.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
D Aronson ◽  
Y Nitzan ◽  
S Petcherski ◽  
E Bravo ◽  
M Habib ◽  
...  

Abstract Background Current treatment of fluid retention in heart failure (HF) relies primarily on diuretics. However, adequate decongestion is not achieved in many patients. Purpose To study the feasibility and short-term performance of a novel approach to remove fluids and sodium directly from the interstitial compartment by enhancing sweat rate. Methods We used a device designed to enhance fluid and salt loss via the eccrine sweat glands. Skin temperature in the lower body was increased to 35–38°, where the slope of the relationship between temperature and sweat production is linear. With this wearable device, the sweat evaporates instantaneously, thus avoiding the awareness of perspiration. The primary efficacy endpoint was the ability to increase skin temperature to the desired range without elevating the core temperature above normal range. A secondary efficacy endpoint was a clinically meaningful hourly sweat output, defined as ≥150 mL/h. The primary safety endpoint was any procedure-related adverse events. Results We studied 6 normal subjects and 10 HF patients with clinical evidence of congestion and median NT-proBNP of 602 pg/mL [interquartile range 427 to 1719 pg/mL]. Participants underwent 3 treatment sessions of up to 4h. Skin temperature increased to a median of 37.5°C (interquartile range 37.1–37.9°C) with the core temperature remaining unchanged. The median total weight loss during treatment was 219±67 g/h (Figure) with a range of 100–338 g/h. In 77% of cases, the average sweat rate was ≥150 mL/h. Systolic (P=0.25) and diastolic (P=0.48) blood pressure and heart rate (P=0.11) remained unchanged during the procedure. There were no significant changes in renal function and no procedure-related adverse events. Conclusion Enhancing sweat rate was safe and resulted in a clinically meaningful fluid removal and weight loss. Further evaluation of this concept is warranted. FUNDunding Acknowledgement Type of funding sources: Private company. Main funding source(s): AquaPass Inc Weight loss due to sweat


2019 ◽  
Vol 127 (4) ◽  
pp. 984-994 ◽  
Author(s):  
Nicole T. Vargas ◽  
Christopher L. Chapman ◽  
Blair D. Johnson ◽  
Rob Gathercole ◽  
Matthew N. Cramer ◽  
...  

We tested the hypothesis that thermal behavior resulting in reductions in mean skin temperature alleviates thermal discomfort and mitigates the rise in core temperature during light-intensity exercise. In a 27 ± 0°C, 48 ± 6% relative humidity environment, 12 healthy subjects (6 men, 6 women) completed 60 min of recumbent cycling. In both trials, subjects wore a water-perfused suit top continually perfusing 34 ± 0°C water. In the behavior trial, subjects maintained their upper body thermally comfortable by pressing a button to perfuse cool water (2.2 ± 0.5°C) through the top for 2 min per button press. Metabolic heat production (control: 404 ± 52 W, behavior: 397 ± 65 W; P = 0.44) was similar between trials. Mean skin temperature was reduced in the behavior trial (by −2.1 ± 1.8°C, P < 0.01) because of voluntary reductions in water-perfused top temperature ( P < 0.01). Whole body ( P = 0.02) and local sweat rates were lower in the behavior trial ( P ≤ 0.05). Absolute core temperature was similar ( P ≥ 0.30); however, the change in core temperature was greater in the behavior trial after 40 min of exercise ( P ≤ 0.03). Partitional calorimetry did not reveal any differences in cumulative heat storage (control: 554 ± 229, behavior: 544 ± 283 kJ; P = 0.90). Thermal behavior alleviated whole body thermal discomfort during exercise (by −1.17 ± 0.40 arbitrary units, P < 0.01). Despite lower evaporative cooling in the behavior trial, similar heat loss was achieved by voluntarily employing convective cooling. Therefore, thermal behavior resulting in large reductions in skin temperature is effective at alleviating thermal discomfort during exercise without affecting whole body heat loss. NEW & NOTEWORTHY This study aimed to determine the effectiveness of thermal behavior in maintaining thermal comfort during exercise by allowing subjects to voluntarily cool their torso and upper limbs with 2°C water throughout a light-intensity exercise protocol. We show that voluntary cooling of the upper body alleviates thermal discomfort while maintaining heat balance through convective rather than evaporative means of heat loss.


2021 ◽  
pp. 004051752110066
Author(s):  
Jie Yang ◽  
Qiqi An ◽  
Yuchen Wei ◽  
Mengqi Yuan

This study aimed to determine the effects of stab-resistant body armor (SRBA) on the physiological and psychophysical strain of security guards. Ten volunteers performed a 50-min treadmill walk at 7.0 km/h in a climate chamber where the ambient temperature and relative humidity were controlled to 40 °C and 40%, respectively. All the participants performed the walk under two experimental conditions: wearing a uniform without (CON) and with armor (SRBA). Several physiological responses (core temperature, skin temperature, heart rate, and oxygen consumption) and psychophysical parameters (thermal sensation vote, thermal comfort vote, ratings of perceived exertion, and clothing and skin wetness) were recorded during the trials. Furthermore, the sweat loss, body heat storage, and physiological strain index (PSI) were calculated based on the measurements. The results indicated no significant difference between the SRBA and CON groups in terms of core temperature, mean skin temperature, heart rate, oxygen consumption, body heat storage, or PSI over time. However, a significant difference ( p < 0.05) between the two trials was observed in terms of scapula skin temperature (40 and 45 min) and body temperature (0 and 45 min). Moreover, the SRBA (3.5 kg and 17% body area coverage) caused an 11% increase in sweat loss, but a 27% reduction in sweating efficiency. Although the armor caused slight discomfort, wetness, and exertion, no significant difference between the two trials was observed in terms of the psychophysical responses. Therefore, the SRBA imposed negligible physiological and psychophysical strain during the 50-min walk in this case.


1995 ◽  
Vol 82 (5) ◽  
pp. 1169-1180 ◽  
Author(s):  
Takashi Matsukawa ◽  
Andrea Kurz ◽  
Daniel I. Sessler ◽  
Andrew R. Bjorksten ◽  
Benjamin Merrifield ◽  
...  

Background Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 +/- 6% and 19 +/- 8%, respectively. (Skin temperature has long been known to contribute approximately 10% to the control of sweating). Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core-temperature thresholds at a single-designated skin temperature. Methods Five volunteers were each studied on 4 days: (1) control; (2) a target blood propofol concentration of 2 micrograms/ml; (3) a target concentration of 4 micrograms/ml; and (4) a target concentration of 8 micrograms/ml. On each day, we increased skin and core temperatures sufficiently to provoke sweating. Skin and core temperatures were subsequently reduced to elicit peripheral vasoconstriction and shivering. We mathematically compensated for changes in skin temperature by using the established linear cutaneous contributions to the control of sweating (10%) and to vasoconstriction and shivering (20%). From these calculated core-temperature thresholds (at a designated skin temperature of 35.7 degrees C), the propofol concentration-response curves for the sweating, vasoconstriction, and shivering thresholds were analyzed using linear regression. We validated this new method by comparing the concentration-dependent effects of propofol with those obtained previously with an established model. Results The concentration-response slopes for sweating and vasoconstriction were virtually identical to those reported previously. Propofol significantly decreased the core temperature triggering vasoconstriction (slope = -0.6 +/- 0.1 degrees C.micrograms-1.ml-1; r2 = 0.98 +/- 0.02) and shivering (slope = -0.7 +/- 0.1 degrees C.micrograms -1.ml-1; r2 = 0.95 +/- 0.05). In contrast, increasing the blood propofol concentration increased the sweating threshold only slightly (slope = 0.1 +/- 0.1 degrees C.micrograms -1.ml-1; r2 = 0.46 +/- 0.39). Conclusions Advantages of this new model include its being nearly noninvasive and requiring relatively little core-temperature manipulation. Propofol only slightly alters the sweating threshold, but markedly reduces the vasoconstriction and shivering thresholds. Reductions in the shivering and vasoconstriction thresholds are similar; that is, the vasoconstriction-to-shivering range increases only slightly during anesthesia.


1983 ◽  
Vol 244 (6) ◽  
pp. R778-R784
Author(s):  
C. J. Gordon

Although heating rate is important for stimulating thermoregulatory reflexes, it is not known if the control system differentiates between total heat gain and rate of heat gain. Exposing animals to microwaves inside a waveguide permits continuous monitoring of whole-body heat absorption. Tail skin temperature of restrained mice was recorded during whole-body exposure to 2,450-MHz microwave radiation at specific absorption rates (SAR) of either 11.5, 21.7, or 43.5 W . kg-1 and whole-body heat loads of 0.3-14 J . g-1. The integration of tail skin temperature with time, defined as the skin temperature index (STI), was measured as a function of absorbed heat load. At ambient temperatures of 20 and 25 degrees C the STI, averaged with respect to heat load, increased significantly with SAR. Depending on SAR, the sensitivity of heat loss from the tail to microwave exposure increased 32-71% per 1 degree C elevation in ambient temperature. The data indicate that heat loss from the tail increases with the whole-body heat load accrued from microwave exposure. When heat loss is averaged with respect to heat load, the rate of heat absorption and ambient temperature increase the sensitivity of thermoregulatory centers that control peripheral heat loss from the tail of mice.


Sign in / Sign up

Export Citation Format

Share Document